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Introduction

By nature, Homo Sapiens is curious. We take an interest in our surroundings and try to
understand what they are made of. Today, our curiosity has led to an understanding of
the world around us that is astoundingly accurate: particle physics predicts the behav-
ior of things that are invisible to the naked eye, but also invisible with most tools like
microscopes.

In the search to understand the world around us, we have evolved from believing that
the world was made of four building blocks; the elements water, fire, air and earth. This
was an established point of view for ancient Greeks and Romans. Even in the Middle
Ages, people still commonly believed the world solely consisted of these four elements.

In the 18th and 19th century people found out that the building blocks of matter came
in a multitude of flavors, called (again) elements. After the discovery of the atom, early
20th century, scientists discovered that elements are not elementary at all: the atom is
made of electrons and a nucleus, which contains protons and neutrons. The number of
protons in the atom determines the type of element.

The twentieth century has been very eventful in the perspective from the description
of the matter in our universe. In the 1960s, it was discovered that even neutrons and
protons were not elementary; they are made of particles called quarks. Almost all matter
around us is made of quarks called up (u) and down (d), and electrons (e). There are also
electron neutrinos (νe), which are created in radio-active processes like β-decay. This set
of four particles together is called a generation. In the 1970s and 1980s it was discovered
that there are three generations of quarks and leptons. The second and third generations
are similar to the first, but heavier. The higher-generation particles eventually decay
to their lighter counterparts, which is why the matter around us mainly consists of the
lightest generation. Or, at least, that is the status at the start of the 21st century. The
behavior, the ‘physics’, of elementary particles is described by physics theory. This theory
is very convincing, it is possible to verify the predictions up to great accuracy. Chapter 1
of this thesis gives an overview of the present theory, which is called the Standard Model.

In their search for smaller and smaller constituents of matter, physicists have become
more and more dependent on technology. The curiosity for the minute particles has led
to the development of intricate tools, tools that shoot particles against other particles
and record the effect of these collisions. Such a tool is called a particle accelerator, and
the result of the collisions is studied by gigantic detectors that enclose the collision point,
looking for the remnants of elementary particle collisions.

In fact, only very few of these particle accelerators are able to probe up to the energies
needed to test the predictions of the Standard Model. Chapter 2 of this thesis describes



Introduction

one of the particle accelerators (the Tevatron, near Chicago, USA) and the detector
(called DØ) that is used to study the remnants of proton-antiproton collisions. Chapter 3
describes the event reconstruction from the output of the DØ detector. These events are
used to test the Standard Model.

Chapters 4 through 7 describe a measurement of the production rate of one of the
particles that is currently regarded as being truly elementary: the top quark (t), the
heaviest quark in the third generation. Top quarks are rarely produced, and there are
background processes which completely overwhelm the signal: there are in the order of
106 background events for every tt event. The analysis mostly concentrates on rejecting
collisions where no top quarks were made.

Top quarks decay to a W boson and a b quark, which leads to a typical event signature.
Only tt events where both W bosons decay to quarks are considered, this is called the
tt to all-jets channel. Detecting the presence of a b quark and exploiting the top event
signature reduces the background to an acceptable level. The silicon tracker is used to
detect the (long lived) decay products of the b. This thesis describes the first measurement
that uses this method in the tt to all-jets channel with the DØ detector.

After rejection of the remaining background collisions the number of top quarks is
counted, and the result is compared to the theoretical predictions.

2



Chapter 1

Theory

1.1 The Standard Model of particle physics

Modern physics at a sub-nuclear scale is described by relativistic quantum field theory. A
particular model that has been extremely successful is called the Standard Model (SM).
The SM and particle physics theory in general have been described in a multitude of
textbooks [1, 2, 3], so only a short overview of the issues relevant to this thesis will be
presented here.

The SM encompasses different types of particle interactions, of which the electro-
magnetic is the most commonly known. The electro-magnetic force, described by Quan-
tum Electro Dynamics (QED), and the weak force are combined in the electroweak sector
of the SM. The strong nuclear force is described in the SM by the field theory called
Quantum Chromo Dynamics (QCD).

Quarks and Leptons

In quantum field theory elementary particles are described by spinors1. Spin 1
2
~ spinors

describe the fermions and can be used to represent the leptons ` = e, νe, µ, νµ, τ, ντ and
quarks q = d, u, s, c, b, t. Requiring the Lagrangian of the quantum fields to be invariant
under gauge transformation of several symmetry groups leads to a natural description
of elementary particles and their interactions. Gauge bosons are described by spin 1~
spinors and are the mediators of the interactions.

Requiring that the theory is invariant under transformation of the SU(3)⊗SU(2)L⊗
U(1) symmetry groups, each with its own coupling constant, leads to a quantum descrip-
tion of the strong and electroweak interaction. The group SU(3), with coupling constant
αS (the strong coupling constant), describes the strong force or Quantum Chromo Dy-
namics (QCD) mediated by eight different gauge bosons called gluons, g. The groups
SU(2)L ⊗ U(1), with coupling constants equivalent to GF (the Fermi constant) and α
(the fine structure constant), describe the electroweak interactions, mediated by the gauge
bosons W and Z for the weak force and the photon γ for the electromagnetic force. The

1Enrico Fermi first defined the field-theory for half-integer spin particles. Satyendranath Bose worked
on whole-integer spin particle fields. Paul Dirac introduced the terms bosons and fermions.
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quarks participate in all three interactions. The charged leptons only experience the
electroweak force. The neutrinos only interact through the weak force.

The coupling strength of the interactions is different for QCD, weak and electro-
magnetic interactions. The coupling constants GF , α and αS change as a function of the
energy scale in the particle interaction, and in some speculative extensions of the SM
there exists a certain scale where the coupling constants are expected to be identical. The
idea that all forces in the SM can be combined into one force is obviously very compelling,
but currently has not been proven. The value of this ‘Grand Unification’ scale where the
three couplings are unified to one coupling is not exactly known. The predictions depend
on models which use measurements as input.

Antimatter, generations and mixing

Quarks and leptons all have their own antiparticle, which is represented by the same sym-
bol but carries a bar above it, so the antiparticle of the top quark t is the t̄. Antiparticles
have the same mass but opposite quantum numbers.

The quarks are grouped into the generations (u, d), (c, s) and (t, b). The generations
for leptons are (e, νe), (µ, νµ) and (τ, ντ ). Each generation of quarks or leptons replicates
quark and lepton properties with one exception: the mass is completely different from
generation to generation. Lepton interactions are characterized by the conservation of
lepton number, where each (anti-)particle from a generation is assigned a unique lepton
number of (−)1. For instance µ → ν̄eνµe decay is only possible by the creation of the
additional two neutrinos.

Weak interactions between quarks from different generations are common. The quark
mass eigenstates are not the same as the weak eigenstates. The weak decay of a quark to
a quark of another flavor is governed by a 3× 3 mixing matrix named the CKM matrix,
after Cabibbo, Kobayashi and Maskawa.

Composite objects

In QCD the equivalent of electric charge is called ‘color’. Color is used to define three
different possible states: red, blue and green. Leptons do not have color. Color inter-
actions are mediated by the gluons g. There are 8 different color interactions possible,
so there are 8 gluons. Quarks and gluons cannot exist as free particles in nature. All
free particles in nature are color neutral. The SM predicts that unbound quarks will
connect to other unbound quarks and form composite objects. It is possible to con-
struct composite fermions and bosons from quarks. The half integer spin bound states
(fermions) are called baryons, and consist of bound states of three valence quarks. The
integer spin bound states (bosons) are called mesons and consist of systems of a valence
quark-antiquark pair.

Higgs mechanism

When, locally, the gauge invariance of the electroweak SU(2)L ⊗ U(1) symmetry group
is broken, the quarks, leptons and gauge bosons acquire mass. The method used for

4



1.1 The Standard Model of particle physics

electroweak symmetry breaking is called the Higgs mechanism. The success of this method
is already shown from the fact that, in the electroweak sector, only one gauge boson
remains massless: the photon. The Higgs mechanism thus transforms the SM to a theory
that describes what we observe in nature: the gauge bosons W and Z are massive, the
photon is massless. The Higgs mechanism also gives rise to an additional massive boson
called the Higgs boson.

The SM has been shown to be predictive and agrees with the experimental data in
many respects. All but one of the predicted particles have been observed: The last missing
particle, the Higgs boson, has not been observed, and it is being searched for actively by
the particle physics community.

The Higgs boson interacts with the quarks and leptons in the SM. In the interaction,
the quarks and leptons acquire mass. The strength of the interaction is dependent on
the mass of the fermion. As the heaviest known elementary particle, the top quark has
the strongest coupling to the Higgs boson. Hence, accurate measurements of top quark
properties are used as one of the inputs for an indirect measurement of the Higgs mass,
as will be discussed in Section 1.4.

Standard Model parameters

If only three generations of quarks and leptons are included, the SM describes the behavior
of strong and electroweak reactions between 25 particles: Six quarks; six leptons; twelve
gauge bosons and the Higgs boson. If neutrinos are considered massless, the basic SM
interactions are described by 19 parameters: The vacuum expectation and self-coupling of
the Higgs field (v and λ); the nine fermion masses (mi); the weak mixing angle (sin θW );
the coupling constants of the three fundamental interactions (gS, g and g′) and four
parameters used to describe the CKM quark mixing matrix2.

Not all of these parameters can be measured directly, so usually more convenient
parameters are used. For instance, at tree-level g, g′ and v can be transformed into
accurately measurable parameters like the aforementioned α and GF structure constants,
and the mass of the Z boson MZ :

α =
1

4π

g2g′2

g2 + g′2
= 7.297352568(24) · 10−3; (1.1)

GF =
1

v2
√

2
= 1.16637(1) · 10−5 GeV−2; (1.2)

and

MZ =
v

2

√
g2 + g′2 = 91.1876(21) GeV, (1.3)

where the uncertainties in the last digits are given in parentheses [9], and ~ = c = 1.
Analyses which compare precision measurements of one SM parameter to predictions
derived from the remaining parameters are called ‘Standard Model fits’.

2Including massive neutrino adds three more mass parameters and an additional mixing matrix, similar
to the CKM matrix but describing the difference between the neutrino mass and electroweak eigenstates.

5
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Figure 1.1: The leading order Feynman diagrams for tt production.

1.2 Top quark production

In hadron collisions, the top quark is primarily produced via the strong interaction. The
Tevatron collides protons (p) on antiprotons (p̄).

The cross section for pp → tt at a pp invariant mass of
√
s can be written as:

σtt̄ =
∑

a,b

∫
dxa dxb f

p
a (xa, µ

2)f p̄b (xb, µ
2) σ̂(ab→ tt̄; ŝ, µ2,mt), (1.4)

where the summation over indices a and b runs over either light quarks or gluons in the
proton (a) and antiproton (b). Here µ2 is an energy scale, to be discussed in detail further
on in this section. σ̂ is the cross section at parton level, where a and b are the partons
that carry a fraction xa and xb of the (anti-)proton momentum, respectively. Both σ̂ and
σ depend on the top quark mass, mt [4].

The parton momenta inside the (anti-)proton are described by the parton distribution
functions f pa and f p̄b . The light quark masses are considered negligible with respect to the
top quark mass. The parton-level cross section σ̂ depends on the energy of the parton-
parton interaction,

√
ŝ =
√
xaxbs. At leading order, there are only a few processes which

contribute to σ̂:
q + q → t + t , (1.5)

quark-antiquark annihilation, and

g + g → t + t , (1.6)

when gluons fuse to produce top quarks in the final state. Figure 1.1 shows the leading
order Feynman diagrams, and Table 1.1 lists the relative contributions of both processes.

The cross section σ also depends on the factorization and renormalization scale. The
latter is introduced during the renormalization procedure. The factorization scale comes
from the splitting (factorizing) of the perturbative (σ̂) and non-perturbative parts (f pa , f

p̄
b )

6



1.2 Top quark production

qq̄ →tt gg →tt
Tevatron (

√
s = 1.8 TeV pp̄) 90 % 10 %

Tevatron (
√
s = 2.0 TeV pp̄) 85 % 15 %

LHC (
√
s = 14 TeV pp) 10 % 90 %

Table 1.1: Theoretical predictions for the relative contributions from the quark-antiquark
annihilation and gluon fusion processes in tt production at the Tevatron and LHC [7].

√
s = 1.8 TeV

√
s = 2.0 TeV

µ = µF = µR NLO [pb] NNLO [pb] NLO [pb] NNLO [pb]
µ/c2 = mt/2 5.4 6.4 7.4 8.9
µ/c2 = mt 5.2 6.3 7.1 8.8
µ/c2 = 2mt 4.7 6.3 6.5 8.8

Table 1.2: Theoretical predictions for the top pair production cross section at NLO and
NNLO. The same energy scale µ is used for the factorization, µF , and renormalization,
µR, scale.

of the cross section. As both scales are arbitrary, the same scale, µ, is used for both. A
common choice for µ is the energy needed at production threshold per parton (µ = mtc

2).
The uncertainty that is created by the choice of energy scale is estimated by varying µ
over an arbitrary range, such as 1

2
mt < µ/c2 < 2mt. In the ideal case, there should be no

dependence on µ in the final result, as the renormalization and factorization scales have
no physical significance.

With the extension of the Feynman diagrams, e.g. involving gluon radiation in the
initial and final state, the theoretical prediction of the tt cross section has been calculated
up to Next-to-Leading-Order (NLO) and even Next-to-Next-to-Leading-Order (NNLO,
or order (αs)

4) precision [5, 6]. The predictions for a top mass of 175 GeV/c2 and
√
s of

1.8 and 2.0 TeV are listed in Table 1.2.

Top production at future colliders

For a comparison, the tt cross section at the next collider, the Large Hadron Collider
(LHC) will also be briefly discussed here. The LHC will collide protons on protons, with
an interaction energy of

√
s = 14 TeV. The NLO prediction for the tt production cross

section at the LHC is σtt̄ = 800 ± 150 pb. Table 1.1 lists the relative contribution of
the two different production processes, which change from the Tevatron to the LHC.
To understand this change, one has to remember that the parton content in the proton
changes as a function of xa/b in Equation 1.4 3. As the LHC will collide protons, this effect

3At large x, only the u, d valence quarks of the proton are probed. If there is more energy available in
the interaction, the x needed for production will drop, and gluon and quark pairs from vacuum interactions
will also be probed. For top production at threshold, at the Tevatron xa/b ≈ 0.18, while at the LHC
xa/b ≈ 0.025.
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is amplified by the absence of anti-valence quarks in the interaction. Consequently, at
the LHC the relative gluon contribution in the proton-proton interaction is significantly
larger than in the pp collisions at the Tevatron.

1.3 Top decay

Top quarks are expected to decay through the process

t→ W+b (or t̄→W−b̄) , (1.7)

for which the branching fraction is nearly 100%. The top decay to Ws and Wd is sup-
pressed by the square of the CKM matrix elements Vts and Vtd. With the SM prediction
of Vtb : Vts : Vtd = 0.99 : 0.04 : 0.01 [9], the decay is dominated by Vtb.

The SM predicts the top quark decay width to be [10, 9]:

Γt =
GFm

3
t

8π
√

2

(
1− M2

W

m2
t

)2(
1 + 2

M2
W

m2
t

)2 [
1− 2αs

3π

(
2π2

3
− 5

2

)]
. (1.8)

Terms of order m2
b/m

2
t , α

2
S and (αS/π)M2

W/m
2
t and higher are neglected. When the higher

order electroweak and order α2
S QCD corrections are included, the overall theoretical

uncertainty of Γt is less than 1%. Using accurately measured [9] values for GF , αs and
MW , and mt = 175 GeV/c2, this leads to a width of the order of 1.5 GeV/c2. Because
of the large width, and corresponding short lifetime (in the order of 10−24 s) , the top
quark is expected to decay before it can hadronize to top-flavored hadrons or tt mesons
(toponium).

The b quarks from t→Wb decay

The presence of b quarks in tt events is a distinguishing signature for top quark production.
Direct (QCD) bb̄ production tends to produce b quark pairs that have a rapidly falling
energy spectrum [12]. The b quarks from the decay of the top quarks, on the other hand,
are much more energetic since they come from the decay of a single massive particle. As
will be shown in Figure 4.10, the transverse energy (ET ) of the b quarks from top decays
peaks around 50 GeV, and even larger transverse energies can be observed.

1.3.1 Top decay channels

With the top quark’s CKM preferred decay to Wb pairs, there is a limited number of
final states possible. Hence, top final states are classified by the decay products of the W
boson. W bosons can decay to leptons and quarks. Rougly, the probability for a W boson
to decay to quarks is 2/3, while the remaining 1/3 of the W boson decays has leptons
in the final state. The experimental numbers differ slightly [9]; the quark contribution is
increased by QCD effects.

So-called ‘jets’ of particles from quark hadronization are used as the experimental
signature for energetic light and b quarks. For tt production, three classes of final states
are distinguished:

8



1.4 Top mass

decay channel W boson decays branching fraction [%]
dilepton `ν` `ν` 10.27 ± 0.17

lepton + jets qq̄ `ν` 43.49 ± 0.27
all-jets qq̄ qq̄ 46.19 ± 0.48

Table 1.3: Predicted branching fractions (in %) for the respective tt̄ final states [9]. Both
¯̀ν` and `ν̄` W boson decays are possible, but are not separately listed.

1. tt̄→W+bW−b̄→ qq̄bqq̄b̄, where both W bosons decay hadronically to q = u, d, s, c
(light) quarks.

2. tt̄→W+bW−b̄→ qq̄b`ν̄`b̄+ ¯̀ν`bqq̄b̄, where one W boson decays hadronically, while
the other decays to leptons ` = e, µ, τ .

3. tt̄→W+bW−b̄→ ¯̀ν`b`ν̄`b̄, where both W bosons decay leptonically.

The different final states are referred to as the all-jets, lepton+jets and dilepton channels,
respectively. Table 1.3 lists the different branching fractions for the three classes of final
states.

The analysis presented in this thesis deals with tt production in the all-jets channel.
The all-jets channel is considered experimentally the most difficult to measure, as there
is significantly more background than in the other decay channels. The main background
is QCD multijet production, which overwhelms the signal by three to four orders of
magnitude.

1.4 Top mass

The top mass is one of the input parameters of the SM. The top quark is very heavy,
around 190 times the proton mass. Because of its large mass, the top quark plays an
important role in precision electroweak analyses, particularly analyses related to the Higgs
boson, which couples to mass [9, 10, 13].

At tree level, the mass of the W boson is predicted completely from MZ through the
weak mixing angle sin θW

4. The W boson mass can be written as [10]:

M2
W =

√
2GF

πα

1

sin2 θW
. (1.9)

When higher-order corrections are included, this expression becomes:

M2
W =

√
2GF

πα

1

sin2 θW (1−∆r)
(1.10)

4The definition used sin2 θW = 1 − M2
W

M2
Z

, is the so-called on-shell definition, because it is defined in

terms of physical (on-shell) quantities.
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Figure 1.2: W mass vs. top mass.
The two ellipses show the current
limits on the top and W mass for
direct (dashed line) and indirect
(solid line) measurements. The di-
agonal lines give the theoretical de-
pendence of MW (mt), for different
masses of the Higgs boson. Pre-
liminary results from new Tevatron
direct top mass measurements are
included [13].

where ∆r contains the radiative corrections on sin θW . The ∆r contribution coming from
top quarks is:

(∆r)t ≈ −
3GFm

2
t

8
√

2π2

1

tan2 θW
. (1.11)

Here, only the W → bt → W and Z → tt̄ → Z one-loop corrections are taken into
account.

Obviously, corrections of the type listed in Equation 1.11 also exist for the other
quarks. However, with the top mass in the numerator, the top quark is expected to
dominate the contributions coming from other quarks, which is why they are ignored in
this comparison.

Combining Equations 1.10 and 1.11, one can observe that M 2
W has a linear dependence

on m2
t .

The dashed ellipse in Figure 1.2 indicates the 68% confidence level limits on MW and
mt coming from direct measurements. The current world average from direct measure-
ments is [9]:

mt = 174.3± 5.1 GeV/c2. (1.12)

There is a new, preliminary, more accurate measurement for mt. This improved mea-
surement of mt is mainly influenced by an improved DØ measurement [14]. The current
preliminary world average is [13]

mt = 178.0± 4.3 GeV/c2, (1.13)

which is significantly higher than the previous world average.
It is also possible to measure the top mass indirectly, for instance through higher order

corrections to e+e− annihilation asymmetries near the Z resonance. Historically, these
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Figure 1.3: Quality ( ∆χ2 ) of the
SM fit of MW and mt as a func-
tion of the mass of the Higgs bo-
son. Shown are the probability for
a certain Higgs mass and its uncer-
tainty, and the mass range already
excluded by direct searches. Pre-
liminary results from new Tevatron
direct top mass measurements are
included. The dotted and dashed
curves show the probability for dif-
ferent values of the hadronic con-
tribution to α [13].

neutral current measurements were actually used to predict the top quark mass several
years before it was discovered5. The world average from these indirect measurements is [9]

mt = 178.1+10.4
−8.3 GeV/c2. (1.14)

The solid ellipse in Figure 1.2 shows the limits set by these indirect neutral current
precision measurements.

The Higgs boson also adds a correction to the W boson mass [10]:

(∆r)H =
11GFM

2
Z cos2 θW

24
√

2π2
ln
m2
H

M2
Z

, (1.15)

which yields an additional logarithmic dependence on mH to the offset of MW (mt). Fig-
ure 1.2 shows the dependence of MW versus mt, for different Higgs masses.

Given that within the framework of the SM (some) quantities depend on the Higgs
mass, the data, notably the measurement of MW and mt, can be used to predict the
Higgs mass. The information contained in Figure 1.2 is presented as a likelihood ∆χ2. The
preliminary value of mt is used. ∆χ2 is, within the framework of the SM, a function of the
Higgs boson mass. The minimum value of the parabola, which represents the theoretical
prediction, indicates the preferred mass of the Higgs boson. Also shown is the Higgs mass
range which is already excluded by searches [13]. The Higgs mass that is preferred by the
SM seems to be only slightly above the mass exclusion limit of 114.4 GeV/c2:

mpreferred
H = 123.3 GeV/c2, (1.16)

5Even before the e+e− annihilation asymmetry measurements, the measurements on b quark mixing
already hinted that the top quark was relatively heavy.
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while the 95% confidence level upper limit on mH is

mH < 260 GeV/c2. (1.17)

1.5 Other properties of the top quark

For completeness, the following section will briefly discuss other relevant subjects in top
physics that are not studied in this thesis.

1.5.1 Top spin

A remarkable property of the top quark is the fact that its spin orientation is transferred
to its decay products and should be directly observable. This is a consequence of the very
short lifetime of the top quark. If the top quark would hadronize, the spin information
would be lost when the quark depolarizes in mesons. Hence, direct observation of quark
spin is only possible in top quark decays.

In pp collisions, the tt pair is expected to be mainly produced through an s-channel
gluon (See Figure 1.1 for the tree-level Feynman diagrams). Since the gluon is a spin 1~
state, the spin of the two top quarks in the final state is expected to be strongly correlated.
Measurement of the top pair spin correlation [15] is an interesting way to check this basic
physical principle.

1.5.2 Single top

Top quarks are produced in pairs through the strong interaction. In the weak interaction,
top quarks are produced together with a b quark in the final state, or with a W boson
through bg fusion. These types of processes are called single top production, and have
not been observed yet. Cross sections are predicted to be of the order of 1 to 2 pb [16].

Single top production is interesting because it is possible to directly measure the
coupling constant of W+ → b̄ + t, Vtb. Another aspect of single top production is that
it provides us with another method to probe the b-quark content in the proton and
antiproton.

In single top production, the spin of the top quark is predicted to be completely
correlated to the spin of the quarks that produced it, (the tb̄ pair couples only to the
spin-1~ W ). This correlation makes single top events a probe of the spin of the quarks in
the (anti)proton [10].

1.6 Signal simulation

Monte Carlo tt signal generated at the Tevatron Run 2 center of mass (
√
s = 1.96 TeV/c2)

is used to simulate tt all-jets events. The hard scattering process is simulated by ALPGEN
1.2 [17] for the top pair production. In the main signal sample, the two W bosons in the
event are forced to decay to quarks. PYTHIA 6.2 [26] is used for the rest of the tt decay.
Table 1.4 lists what processes are taken into account by what Monte Carlo generator.
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1.7 Backgrounds for tt production in the all-jets channel

ALPGEN PYTHIA
pp̄→ tt̄ final state radiation

initial state radiation tt̄→W+bW−b̄→ qq̄bqq̄b̄
quark hadronization

Table 1.4: A list of the processes necessary to simulate pp̄ → tt̄ → all-jets events. The
different processes are listed by Monte Carlo generator, we use a stacked simulation with
ALPGEN and PYTHIA.

PYTHIA adds additional final state radiation and simulates the production of decay
products and hadronization. ALPGEN has the advantage that it is possible to include the
full spin correlation for the top quarks, while PYTHIA simulates the hadronization and
parton showering as observed in data. PYTHIA uses a model called string fragmentation,
which uses ‘color strings’ that create particles according to the initial quark or gluon
momentum. This method has the advantage that it correctly describes the behavior of
the color flow in the jet. ALPGEN, on the other hand, is tuned to accurately predict the
kinematics of pp̄→ tt̄→ X processes at the level of the matrix element.

One of the inputs for both PYTHIA and ALPGEN is the scale for the calculation of
the tt processes. Here, the scale used is mtc

2, which is similar to the values used in the
theoretical (N)NLO cross section calculations (Section 1.2). The set of parton distribution
functions used by ALPGEN for modeling the proton and antiproton is cteq6.1m [27].
The decay in PYTHIA uses cteq5l [28]6. The various branching fractions and lifetimes
of long-lived b quark states are modeled by EVTGEN [29].

The top quark mass is set to 175 GeV/c2 in the main sample. Two smaller samples
at masses of 165 and 185 GeV/c2 are used for studies of top mass dependence. Another
control sample is generated for systematic studies, here only one W boson decays hadron-
ically and the other W boson decays to leptons ` = e, µ, τ . The theoretical prediction
of the Monte Carlo tt production cross section is set to 6.5 pb. The signal sample con-
sists of 48k events. The tt Monte Carlo sample contains a hundredfold more events than
theoretically predicted in the data sample at hand.

1.7 Backgrounds for tt production in the all-jets chan-

nel

Events with six or more jets from light quarks or gluons are the dominant background for
the tt to all-jets measurement.

Full matrix element calculations for high-multiplicity QCD processes exist only to
leading order, and are accessible through the ALPGEN [17] Monte Carlo generator. The
largest number of ‘hard’ partons in these Monte Carlo simulations is six. Next-to-leading

6The choice to use different parton distribution functions is merely technical. The version of the DØ
software environment used in this thesis was only able to run this version of PYTHIA within the timespan
of the completion of the analysis.
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order calculations are only available for two- and three parton final states [18]. The studies
of the most recent pp data at the Tevatron are not yet published.

At the Tevatron pp interactions, the cross section for six-jet events at
√
s = 1.8 TeV/c2

(Run 1) has been studied using the ALPGEN LO Monte Carlo simulations [17, 22]. The
expected cross section depends very strongly on the jet ET cut. For ET > 30 GeV the
cross section is expected to be around 50-100 pb. The experimental (Run 1) result is in
agreement: the CDF experiment has measured 48 ± 1 pb with similar jet requirements.
When the jet threshold is loosened, the cross section increases rapidly, at ET > 15 GeV
the predicted cross section at LO increases by around a factor 100.

The quality of the QCD predictions of this type have been studied experimentally
by the DØ collaboration for events with up to four jets, and then mainly in the high
transverse energy range [19]. Typically there are requirements on the ET of jets in the
order of 30 GeV or more. Similar measurements have also been performed by the CDF
collaboration [20]7. Both results were obtained during the Run 1 period of the Tevatron.

The main conclusions of both measurements are that the commonly used Monte Carlo
generators are good at predicting jet kinematic distributions for two- and three-jet events,
but at higher jet multiplicities the predictions become less reliable and the Monte Carlo
parameters have to be finely tuned to agree with data. The jet multiplicity distributions
are usually predicted correctly, but jet transverse energy (ET ) spectra already disagree
for events with four jets. This is the reason that for these QCD measurements the re-
quirements on the jet energy are quite tight.

The Monte Carlo fine tuning has not been done on the current Tevatron data, which
are taken at a larger interaction center of mass energy. Because the Monte Carlo fails to
accurately describe the data, the analysis presented in this thesis will solely rely on data
for the estimation of the background.

Other backgrounds

Another background that should be considered is the production of a (hadronically) de-
caying W boson with four extra jets. The cross sections for W + 4 jets and tt production
are of similar size [23], so processes like this can be ignored with respect to the overwhelm-
ing QCD background. However, if the presence of b quarks is required, the pp̄→ W + bX
cross section is negligible with respect to the tt cross section [24].

7The CDF collaboration has measured up to six-jet multiplicities. Discrepancies were observed be-
tween different Monte Carlo generators and the data.
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Chapter 2

Experimental Setup

In the early 1990’s the DØ experiment was installed at the Tevatron proton-antiproton
collider at Fermi National Accelerator Laboratory, in Batavia (near Chicago), Illinois,
United States of America. The DØ experiment received its name from its location on
the collider ring, which has a lattice consisting of six segments labeled A to F, which
are subdivided in eight segments numbered 0 through 7. The other experiment at the
Tevatron is called the Collider Detector at Fermilab (CDF) and is located at location BØ
on the ring. Initially, the high energy physics community anticipated to use only the CDF
experiment, but already in the early stages of detector development people realized that
a second experiment would be necessary to provide the necessary scientific verification.

DØ became operational in 1992 [33]. Its main features were good energy measurement,
with a very granular, high precision liquid Argon/Uranium sampling calorimeter, and
large angular coverage, also in the muon detector. As any extra material would decrease
the energy resolution, no solenoid was placed inside the calorimeter. The lack of a central
magnetic field had as consequence that the inner tracking at DØ could not be used to
measure the momentum of charged particles, so would only focus on distinction between
charged and neutral particles.

The CDF and DØ collaboration simultaneously published the discovery of the top
quark at the Tevatron in 1995 [34]. DØ takes a leading role in the measurement of jet
spectra and other QCD phenomena.

2.1 The Tevatron

The Tevatron accelerator became operational in 1983, providing several fixed target ex-
periments at Fermilab with a 800 GeV proton beam. Proton-antiproton collisions were
established in 1986, with a maximal operating energy of 900 GeV per beam.

In 2001 the Tevatron started a new era with a proton and antiproton beam of 980 GeV,
an improvement in beam-optics and a decrease in bunch spacing which greatly improves
the Run 2 performance. Table 2.1 gives the design operating parameters for Tevatron’s
Runs 1 and 2. Typical average values of the instantaneous luminosity are around 30×1030

for the data studied in this thesis.
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Run 1 Run 2
Running period (expected) 1993 - 1995 2001 - 2009 delivered
p bunches 6 36 36
p / bunch 2.3× 1011 2.7× 1011 2× 1011

p bunches 6 36 36
p / bunch 5.5× 1010 4.2× 1010 3× 1010

bunch spacing [nsec] 3500 396 396
interactions/crossing 2.5 2.3 1.5
typical luminosity [cm−2s−1] 0.16× 1032 2.0× 1032 1.0× 1032

integrated luminosity [pb−1/week] 3.2 17.3 18.6

Table 2.1: Design operating parameters for the Tevatron collider for Run 1 and Run 2.
Also listed are the record values that are achieved up to 2004. For the current status of
the Tevatron beam see [25]

2.1.1 Tevatron operation

DO/

Figure 2.1: Schematic view of the
Tevatron configuration for Run 2.

The Tevatron is supported by a chain of pre-accelerators (Figure 2.1):

• The Cockroft-Walton accelerator is used to accelerate bunches of (negatively charged)
hydrogen ions to an energy of 750 keV;

• The hydrogen ions are then accelerated up to 400 MeV by a linear accelerator. After
the LINAC, the ions are sent through a carbon foil, which strips the electrons and
leaves the bare protons;

• The first synchrotron accelerator, the booster, is then used to accelerate the protons
to an energy of 8 GeV;
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2.2 The DØ Detector

• The protons are now ready to be inserted into the main injector. The Main Injector
is positioned in a separate beam tunnel adjacent to the Tevatron, as can be seen in
Figure 2.11. The main injector can be used to accelerate protons and antiprotons up
to an energy of 150 GeV. Antiprotons are produced by shooting a 120 GeV proton
beam on a nickel target. In the overwhelming amount of secondary particles from
these proton-nucleus collisions a small amount of antiprotons is produced (typically,
one needs 105 proton collisions to collect one antiproton). The antiprotons are
‘stacked’ in the antiproton accumulator, until enough have been collected. The
antiprotons are then sent to the main injector for injection into the Tevatron;

• The final accelerator is the Tevatron itself. It accelerates the bunches of protons and
antiprotons to an energy of 980 GeV. There are two points where the beams collide:
CDF and DØ. In parallel, a fraction of the protons is used to feed Fermilab’s fixed
target experiments.

2.2 The DØ Detector

This section describes the configuration of the DØ experiment during the collection period
of the data used in this thesis. Figure 2.2 shows a three-dimensional representation of the
DØ detector.

The DØ detector consists of a collection of different sub-detectors around the pp
interaction point. From the interaction point outward they are:

• a vertex detector, the Silicon Microstrip Tracker (SMT);

• a central tracker, the Central Fiber Tracker (CFT);

• a solenoid magnet to provide the central magnetic field;

• a calorimeter in three cryostats;

• a muon system with a toroid magnet.

In the following sections, the different sub-detectors are discussed in more detail, con-
centrating on systems which are particularly important to the analysis presented in this
thesis.

2.2.1 Coordinate system

Detector coordinates

The standard DØ coordinate system is defined as:

1During the Run 1 period, the ‘Main Ring’ accelerator used for injection was situated in the same
tunnel as the Tevatron. As a consequence of the storage beam passing through the detector volume, DØ
could not use 25% of the pp collisions because of this [35]. CDF did not have this problem, the Main
Ring passed outside its active detector volume.
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Calorimeter

Silicon
Microstrip
Tracker

Muon
Toroid

Central Fiber Tracker

Muon System

9 m

8 m

Interaction point

Solenoid

Figure 2.2: A view of the DØ Run 2 detector. Shown are, from the interaction point
outward: the tracking detectors Silicon Microstrip Tracker (SMT) and Central Fiber
Tracker (CFT) with their solenoid magnet, the calorimeter in its three cryostats and the
three-layer muon system with its toroidal magnet.
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2.2 The DØ Detector

• the x-axis points horizontally away from the center of the Tevatron ring;

• the y-axis points upward;

• the z-axis points along the proton beam.

Whenever a cylindrical coordinate system is used, φ is defined as the polar angle. The
radial coordinate r is the radial distance from the z-axis. Occasionally, an additional
coordinate θ is used, which is equivalent to the azimuthal angle. By definition, θ = 0 is
along the proton beam direction, while φ = 0 is at the positive x-axis.

At hadron colliders, it is useful to work with variables which are not very sensitive to
the boost of the particle interaction. As the initial momentum transfer of the pp inter-
action is not known, most coordinates are parametrized as Lorentz-vectors as a function
of energy E, transverse energy ET =

√
E2
x + E2

y (sometimes the transverse momentum

pT =
√
p2
x + p2

y is used), φ, and pseudo-rapidity η, which is defined as:

η ≡ − ln
(

tan
θ

2

)
. (2.1)

η approximates the true rapidity of a particle, y = 1
2

ln((E + pz)/(E − pz)). Translations
in y are invariant under Lorentz-transformation in the z direction, which means that
differences in y are also Lorentz-invariant in z.

Physics coordinates

This coordinate system describes the relevant physical quantities of the observed particle,
and is hence called the physics coordinate system. The physics coordinate system is
clearly distinguished from the system where η is measured from the absolute center of
the detector (z = 0). This coordinate system is labeled the detector coordinate system,
and the pseudo-rapidity is referred to as ‘detector η’ or ηdet. In the physics coordinate
system ηphys is used, which is usually just written as η. In this thesis physics coordinates
are used, unless stated otherwise.

The proton-antiproton collisions at DØ occur over a 1 m region of z. The Interaction
Point or Primary Vertex (PV) can be reconstructed by several different methods, and η,
φ and ET are measured with respect to this point.

Cone space

It is often convenient to parametrize the distance between objects in η, φ space. These
distances are measured using the ‘cone’ distance dR:

dR =
√

(∆φ)2 + (∆η)2, (2.2)

where ∆φ and ∆η are the distances between two objects in φ and η coordinates.
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2.2.2 Luminosity measurement

The instantaneous luminosity of pp interactions is determined by measuring the total
inelastic pp interaction rate. DØ uses the world average total pp cross section to obtain
a total inelastic cross section within the DØ acceptance of 59.3 ± 2.3 mb at 1.8 TeV
center of mass energy [36], which is then corrected to the current Tevatron energy of√
s = 1.96 TeV. The pp interaction rate is measured by scintillator counters close to the

beam.
The interaction rate changes per bunch crossing, as not every proton or antiproton

bunch in the beam necessarily has the same intensity. A database is used to store the
different luminosities per bunch. The instantaneous luminosity a particular trigger is
exposed to is calculated from the stored bunch crossing information [37, 39]. This method
measures the instantaneous luminosity with an accuracy of 6.5%.

2.2.3 Magnets

The measurement of charged particle momenta is determined from the curvature of the
track in a magnetic (B) field. The B field inside the calorimeter is provided by a super-
conducting solenoid, which has a two-layer coil with a radius of 60 cm. The solenoid
produces a magnetic field of 2 T in the proton or antiproton direction. To provide a
uniform value of the B field integral, sin θ

∫
Bzdl, the ends of the solenoid coil have higher

current density.
Outside the calorimeter, the toroidal magnet, which was inherited from Run 1, is used

for muon momentum measurement. The (toroidal) magnetic field in the muon system has
field lines perpendicular to the beam axis, and has a field strength of 1.8 T. The iron of
the muon toroid also serves as the return yoke for the central solenoid. The local values
of the B fields in the tracking volume and muon system are stored in a field map.

2.2.4 Tracking

The Silicon Microstrip Tracker

Figure 2.3 shows the DØ Silicon Microstrip Tracker (SMT). The upgraded DØ tracking
system is designed to have a large pseudo-rapidity coverage in combination with a high
resolution vertex identification, to provide secondary vertex identification for a variety of
physics processes like b-physics and top-physics. Besides these physics-based requirements,
the Run 2 running conditions and small confinement inside the calorimeter add some extra
constraints to the Silicon Tracker design.

The DØ SMT is placed in the center of the DØ detector. The SMT has an outer
radius of 16 cm (26 cm for H-disks), covering a pseudo-rapidity range of |ηdet| < 3. In
total, the SMT reads out almost 800 k channels. An elaborate description of the SMT
geometry can be found in [38, 41].

The SMT contains six barrel-shaped, eight-layer micro-strip detectors, each consisting
of four φ-hermetic combinations of two layers. The barrels are shown in Figure 2.3. Both
single-sided and double-sided micro-strip detectors are used, where the latter measure
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Figure 2.3: View of the DØ SMT. Shown are the six barrels, twelve F-disks and four
H-disks.

channels sensor type stereo angle # chips strip pitch
barrels 2-5 276.5 k double-sided 90◦ 6 50/153 µm
(High Occup.) double-sided 2◦ 9 50/67 µm
barrels 1 and 6 111.0 k single-sided - 3 50 µm
(Low Occup.) double-sided 2◦ 9 50/67 µm
F-disk 258 k double-sided ±15◦ 14 63 µm
H-disk 107 k single-sided ±7.5◦ 6 × 2 80 µm

Table 2.2: Summary of SMT sub-detector and sensors. Listed are the number of channels
for the different types of barrel and disk detectors, the type of microstrip sensor technology
used, the stereo angle (if applicable), the number of readout chips and the pitch, the
distance between two strips.

the z-coordinate by means of a stereo angle between the strips, as listed in Table 2.2.
Besides the barrels, the SMT also contains disk-shaped detectors of two kinds, 12 F-disks
which are placed between and outside the barrel detectors and, placed further away, 4
H-disks covering the high |ηdet| range. F-disks consist of trapezoidal double-sided micro-
strip detectors. H-disks are constructed of two single-sided micro-strip detectors that are
glued back-to-back. Figure 2.3 displays the configuration of the different disks.

The SMT modules are read out with SVX2e chips, which are able to measure the
deposited charge per strip, using analogue pipeline technology. Each chip has 128 readout
channels [40]. The number of chips used to read out a detector varies per detector type,
but all SVX2e chips are read out via a readout hybrid, which is called a High Density
Interconnect (HDI). Table 2.2 lists the various silicon detector types used in the SMT.

Every silicon module is aligned with an accuracy of 10 µm. The silicon is cooled by
means of a mixture of water and glycol to a temperature of −7◦C.
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The Scintillating Fiber Tracker

The part of the tracking volume between the silicon and pre-shower detector is filled by
a scintillating fiber tracker. The Central Fiber Tracker (CFT) covers the central pseudo-
rapidity region. The CFT provides track reconstruction for charged particles within a
range of |ηdet| < 2.0, and provides tracking information to the trigger. The triggering
range for the CFT is |ηdet| < 1.6.

The fiber tracker consists of 76,800 scintillating fibers that are mounted on 8 concentric
cylinders. The fibers are positioned with an accuracy of 25 µm. A hit in the CFT system
is measured with an accuracy of 100 µm in r, φ. Each cylinder contains two layers, one
for axial readout and one at a 3◦ stereo angle, to make it possible to also reconstruct
the z coordinate. The stereo layers are alternating in negative and positive stereo angles.
There are no geometric gaps in a layer, and a minimum of 2 potential hits per cylinder.
CFT fibers scintillate in the yellow-green part of the spectrum, the emission wavelength
is around 530 nm.

A minimum ionizing particle produces only few photons by scintillation. To detect
the photons a Visible Light Photon Counter (VLPC) is used, a device based on a chilled
solid-state photomultiplier. Digitization is provided by the SVX2e chip, that is also used
to read out the DØ silicon.

For lowest-level triggering, the CFT signal is split off between the VLPC and SVX2e
chip, and read out by amplifier and discriminator pairs. These provide the input to a
fast programmable hardware trigger, based on r−φ patterns in 4.5 degree sections of the
central axial layers.

Pre-shower Detectors

The DØ pre-shower detectors are placed between solenoid and calorimeter. The pre-
shower detectors operate as a thin scintillator calorimeter layer. The energy deposited
in the pre-shower detector is included in the measurement of the electromagnetic energy.
This way the detector can be used to identify EM objects2 that have already started an
electromagnetic cascade in the solenoid magnet. They also provide an extra track position
measurement. As the scintillator technology used is almost identical to the Central Fiber
Tracker, the pre-shower detectors are read out with VLPCs.

2.2.5 Calorimetry

The DØ experiment prides itself with a liquid argon sampling calorimeter. Though the
DØ calorimeter itself has not been changed since the start of the experiment, for Run 2 the
readout electronics have been replaced to be able to read out at the higher bunch-crossing
rates.

Liquid argon has the disadvantage that an intricate cryogenic system is necessary to
operate the calorimeter at very low temperatures. However, once installed, liquid argon
calorimeters are radiation-hard and easy to maintain. The calorimeter is divided into

2Electrons should be read as electrons and positrons. The combination of electrons, positrons and
photons is referred to as electromagnetic (EM) objects, unless stated otherwise.
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Figure 2.4: Side view of a quarter of the calorimeter, cut at the y−z plane, with the central
barrel calorimeter and end cap calorimeter in separate cryostats. The pseudo-projective
towers in ηdet are also indicated.

three cryostats, one central barrel and two end caps. Figure 2.4 shows a cross section of
the calorimeter in the y − z plane.

Figure 2.5 shows the layout of a basic calorimeter readout cell, consisting of metal
absorber plates and resistive pads with the intermediate gap filled with liquid Argon.
The gap is the same for all calorimeter readout cells. Depending on the location in
the calorimeter, depleted uranium, copper or stainless steel absorbers are used to induce
electro-magnetic and hadronic showering. Table 2.3 lists the use of these materials in
the different calorimeter regions. The secondary particles in the shower ionize the argon
atoms that fill the gaps between the absorber plates. As a potential is applied, the
electrons from the argon ionization drift across the gap toward the resistive pads, which
are anodes covered by a dielectric. The induced charge on the pads can be integrated, and
is proportional to the energy of the particles in the shower. Several of these unit cells are
stacked together, and these readout cells are the basic units of energy measurement with
the DØ calorimeter. The number of unit cells per readout cell depends on the location in
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calorimeter unit cell

Figure 2.5: A calorimeter unit
cell. A voltage of approximately
1.7 kV is maintained between the
grounded absorber plates (1) and
the resistive pads (3). Electrons
drift through the electric field in
the 2.3 mm gap filled with liquid
argon (2) in about 450 ns.

Calorimeter section Absorber used # layers tower ∆φ×∆η
Central, Electro-magnetic Uranium 4 0.05× 0.05 ?

Central, Fine hadronic Uranium 3 0.1× 0.1
Central, Coarse hadronic Copper 1 0.1× 0.1
Forward, Electro-magnetic Uranium 4 0.05× 0.05 ?

Forward, Fine hadronic Stainless Steel/Uranium 3/4 0.1× 0.1
Forward, Coarse hadronic Stainless Steel 1/3 0.1× 0.1

Table 2.3: Parameter table for the different calorimeter sub-detectors. Only the electro-
magnetic sections (marked ?) have the fine granularity in one layer, the rest of the EM
sections has 0.1× 0.1 size readout towers.

the calorimeter.

The choice of absorber material is particularly important in the inner region of the
calorimeter, where both photons, electrons and hadrons interact. In this electro-magnetic
calorimeter, depleted uranium is used. The electro-magnetic calorimeter covers approxi-
mately 20 radiation lengths. The calorimeter section that uses Uranium is almost com-
pensating, meaning that it provides the same energy response to hadrons (Eπ) and EM
objects (Eem) of the same energy. The ratio Eem/Eπ has been measured to be between
1.11 at 10 GeV and 1.04 at 150 GeV. At the depth that the electro-magnetic shower is
expected to deposit most of its energy, the electromagnetic calorimeter cells have finer
segmentation to provide higher position accuracy, see Table 2.3.

Outside the electro-magnetic calorimeter resides the hadronic calorimeter, which does
not need to be as finely segmented, as hadronic showers are larger than electro-magnetic
ones. Typically, this part of the calorimeter is used to measure jets of particles, created
by a hadronizing parton, and these jets will be covering several towers. The hadronic
calorimeter region is split up in sections with fine and coarse cell depths, which cover
approximately 95 and 35 radiation lengths, respectively. The coarse hadronic calorimeter
is mostly used to measure all energy that has not been absorbed by the previous layers.
After almost 150 electro-magnetic radiation lengths, or 8-10 hadronic interaction lengths,
the DØ calorimeter is not expected to have a significant fraction of punch through par-
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2.2 The DØ Detector

ticles. As a consequence, only minimum interacting particles (muons) are expected to
travel into the muon spectrometer.

Inter-Cryostat Detector

There is a small gap between the central and forward calorimeters, see also Figure 2.4.
This volume in the detector is mainly filled by cryostat walls, support structures and
cabling. To improve the jet identification in the 0.8 < ηdet < 1.4 range, the inter-cryostat
region is equipped with scintillating tiles. The Inter-Cryostat Detector (ICD) consists of
a layer of ∆η ×∆φ = 0.1 × 0.1 tiles, matching the towers in the calorimeter. Note that
in the whole ICD region, there is always still a significant part of either the central or
forward calorimeter that provides coverage.

Calorimeter resolution

The energy resolution of the calorimeter has been parametrized in terms of

σ

E
=
N

E
⊕ S√

E
⊕ C (2.3)

where N is the energy smearing caused by the noise of the read-out electronics and
uranium decay, S is the smearing caused by the fluctuations in energy sampling and C
the calibration error. The measured values are N = 0.140 GeV, S = 14.8%

√
GeV and

C = 0.3% for e±/γ and N = 1.28 GeV, S = 44.6%
√

GeV and C = 3.9% for charged
pions, see [42]. In this thesis, the calorimeter is mainly used to measure composite jet
objects, that consist of both EM objects and pions. The resolution for jets, collections
of pions, electrons and photons, is dominated by the non-linearities of the calorimeter(S
and C), and was measured to be S = 90.2%

√
GeV and C = 5.2%.

2.2.6 Muon system

There is a central and a forward muon system, see Figure 2.2. The central muon system
has coverage up to |ηdet| = 1; the forward system extends from the central system to
|ηdet| = 2. The system uses proportional drift tubes (PDTs) in the central system, and
mini-drift tubes (MDTs) in the forward region. The choice to use a different detector
technology is motivated by the fact that there is significantly more radiation in the forward
muon detector region, and MDTs are less sensitive to high-radiation environments.

The muon system of the DØ detector consists of three multi-layers of drift tubes,
labeled A, B and C, where the latter is furthest from the interaction point. Each multi-
layer consists of three (four for the A layer) layers of drift tubes, so it is possible to
reconstruct a track segment within one multi-layer. The muon chambers do not provide
full coverage in φ. There is no coverage in the bottom A-layer in the central muon
system, from φdet = 225◦ to φdet = 310◦. This area is occupied by the calorimeter support
structure.
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The central inner and outer multi-layer also have an extra layer of ∆ηdet × ∆φdet =
0.1 × 4.5◦ scintillation counters (tiles), which can be used for triggering and cosmic ray
rejection. In the forward region every layer has scintillator counters.

The accuracy with which the muon momentum can be measured using only the muon
system is about ∆p/p = 20(40) % for muons with a momentum around 10(50) GeV/c.
The spatial resolution for a hit is around 1 mm for both the PDTs and MDTs. More
detailed studies can be found in [11].

In this thesis, muons reconstructed in the muon system are matched to tracks from the
central tracking system, which means the central track resolution dominates the resolution
on the muon momentum.

2.3 The DØ trigger system

At DØ, the bunch-crossing rate is around 2.5 MHz. The DØ collaboration does not
have the capability (caused by dead time of readout electronics) or the financial means
(computer farms to reconstruct every pp collision) to look at every event that is created
at the interaction point. This means that also ‘hard’ inelastic pp interactions will have to
be rejected. As a result, the trigger selection is motivated by the physics program of the
DØ collaboration.

The task of the DØ trigger system is to sieve through the 1.7 million interactions per
second. The final output rate is limited to 50 Hz. The events are selected based on the
presence of objects that are likely to come from inelastic interactions with high transverse
energy, events containing leptons, events with many or very energetic jets and events
where the transverse momentum is unbalanced.

We use a trigger system consisting of three steps (trigger levels), which is described in
more detail in the following pages. We focus on calorimeter and jet triggering, which are
most relevant for the analysis discussed in this thesis.

2.3.1 First level trigger

The first level trigger (L1) is a hardware based system. It takes information from the
calorimeter, muon system, pre-shower detector and fiber tracker. It is designed to provide
a 10 kHz output rate, independent of the input rate.

The L1 system provides simple detector information in objects called L1 terms. It
is possible to combine these L1 terms with simple logic, like and and or operations.
A designated computer system called the trigger framework manages all the available
information. The L1 trigger system is designed to store the events in a large buffer, which
means that there is 3.3 µs available to make a decision. There is only a limited number
(256) L1 terms available, which can be used by different higher-level triggers. If any of
the L1 terms has fired, the event is passed to the second-level trigger. The typical dead
time of the L1 trigger is around 1-5%.
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L1 calorimeter triggers

The L1 calorimeter tower objects are defined as projective trigger towers with size ∆ηdet×
∆φdet = 0.2 × 0.2, or 2 × 2 calorimeter readout cells. It is possible to combine only the
information from the electro-magnetic section of the calorimeter (for electron and photon
triggers) or the entire calorimeter (for jets). The coarse hadronic calorimeter is not used
in the L1 trigger. The L1 calorimeter trigger is instrumented up to |ηdet| < 3.2 for most of
the data used in this thesis. A small sub-set is from an earlier period, when the calorimeter
trigger was implemented to |ηdet| < 2.4

The electro-magnetic triggers are named CEM(n, x), and the calorimeter L1 terms are
called CJT(n, x), where n is the number of trigger towers to be required over an energy
threshold of x GeV. Typical threshold values are of the order of 5 GeV, but much higher
values are used for specific physics triggers.

L1 track trigger

The L1 track trigger only uses the axial layers of the CFT, which are divided in projective
wedges with an opening angle of 4.5◦. The measured hit pattern is compared to pre-defined
patterns for four different track transverse momentum bins. The hit patterns are only
defined for single tracks at low occupancy, which are not relevant for the analysis discussed
in this dissertation.

L1 muon trigger

The L1 muon system is divided in 8 segments, for both the central and forward muon
chambers. Muons are detected in the first level trigger system by requiring a coincidence
of scintillator tiles in two of the three muon system layers. There is a limited time window
for this coincidence, to reject cosmic rays. Most muon triggers also require a hit in the
drift chambers.

2.3.2 Second level trigger

The second level trigger (L2) consists of programmable hardware and microprocessors. All
subsystems use similar technology, and all information is then combined in one processor
which makes the global L2 trigger decision. The L2 system is designed to provide a data-
reduction of a factor 10, and has around 100 µs to make this decision. Most systems use
the information already available from the first trigger level to define regions of interest
for the L2 trigger. At the second trigger level, simple physics object information is already
available, so more complicated trigger requirements can be made.

L2 calorimeter trigger

The L2 calorimeter trigger is designed to run algorithms for electron/photon, jet and
missing transverse energy (6ET ) identification. At the second trigger level, the precision
calorimeter readout is used, which improves the jet energy measurement. However, not
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the full granularity is available at L2 as there is not sufficient time to consider the en-
tire calorimeter. Instead, the L1 calorimeter information is used as seeds to select the
calorimeter towers for the L2 triggers.

For L2 jets, the algorithm combines 5× 5 trigger towers, where a fired L1 tower over
threshold is used as the seed. The sum of ET of all towers in the L2 jet is used as the
trigger. It is also possible to construct composite objects, like the sum of the ET of the
jets in the event.

Photons and electrons are identified using L1 EM towers as seeds. Only the four most
energetic towers nearest to the L1 seed are used. These electro-magnetic trigger towers
are used to calculate the L2 ET . A comparison is made to the energy measured in the
hadronic calorimeter, only L2 EM objects of which 50% or more of the total transverse
energy comes from the EM calorimeter are triggered.

The missing transverse energy, 6ET , is just the vector sum of the ET of the individual
trigger towers. This variable is used to identify particles that were not detected in the
calorimeter, for example energetic neutrinos.

L2 tracks and vertices

The L2 tracking uses the same data as the first level tracker, but extracts more information
from it. At the second trigger level, it is possible to measure the track pT by reconstructing
a (coarse) track from the L1 hits. A more accurate φ coordinate is derived from the
information of the innermost CFT layer. The track coordinates are also extrapolated to
the calorimeter radius, to make it possible to match the track to calorimeter electrons.

L2 muon trigger

At the second trigger level, there is complete, calibrated, timing information available from
the muon system. As there is enough information to reject poorly identified muons and
cosmic rays, it is possible to loosen the (tight) L1 timing requirements on the scintillator
hits. Loosening the scintillator timing requirement improves the efficiency and accuracy
of the track measurement. The second level muon trigger uses information from the
scintillator and drift chamber hits, and makes use of reconstructed track segments from
the muon and the central tracking system. The L2 muon trigger can be tuned, for instance,
to trigger on energetic isolated muons for W and Z physics, and on non-isolated muons
in jets for bb̄ production.

2.3.3 Third level trigger

The third trigger system (L3) consists of a collection of Linux PCs which reconstruct the
event, based on all data coming from the detector. The L3 system consists of a modular
system of software tools and filters. The L3 code structure is similar to the structure used
in the event reconstruction that is run offline, but less options are available.

In principle, all algorithms are able to run both on the L3 and reconstruction PC
farms, but usually the algorithm implementation is limited by processing time. At the
third trigger level, the available time per event is 100 ms. When at least one L2 trigger
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has fired, all (digitized) data is collected from the different sub-detectors and collected on
one PC, on which a complete event reconstruction is done.

Because of the plethora of available triggers and triggering algorithms (tracking,
muons, electrons, b-vertex finding, etc.), the only trigger that is relevant to the analy-
sis discussed in this thesis is discussed below.

At the third trigger level, only one type of jet algorithm is currently run: The cone
algorithm, which is discussed in section 3.1.2. We use a cone size of R = 0.7, with no
splitting or merging. In addition, the L3 jet trigger requires the presence of a primary
vertex. The scalar sum of the pT of the tracks assigned to the vertex has to be over a
threshold of pL3PV

T > 1 GeV/c. The mild vertex requirement is used to reject fake jets
that consist of calorimeter noise. The exact configuration of all trigger levels used for
data collection is described in Section 4.1.2.
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Chapter 3

Object Identification

In this chapter, we describe the physical objects that are measured in the DØ detector.
For the tt analysis presented in this thesis, calorimeter jets play a major role, and will be
described in more detail.

3.1 Calorimeter jets

3.1.1 Noise suppression and the T42 algorithm

At the start of Run 2, the DØ collaboration was unpleasantly surprised by the presence of
noise in the calorimeter readout electronics. We use the T42 algorithm [47] for suppression
of this calorimeter noise.

The noise of a calorimeter signal, indicated by σped, is the root mean square (RMS) of
the calorimeter pedestal in ADC counts. The ADC pedestals are measured per calorimeter
readout cell in dedicated calibration runs.

The T42 algorithm removes isolated moderately energetic calorimeter cells, which are
mostly caused by electronics noise. Cells with a calorimeter energy of less than 2.5σped
are ignored by the offline reconstruction. If a cell energy between 2.5σped and 4.0σped is
observed, the cell is removed only if it is isolated. An isolated cell is defined as being
not adjacent to another cell that passes the pedestal threshold. We do not apply the
T42 algorithm in the first layer of the electro-magnetic calorimeter, and also not in the
coarse hadronic layers of the inter-cryostat region1. Cells with negative energies are always
rejected.

Depending on the type of data sample, the ratio of T42-rejected cells over the total
number of cells in the entire calorimeter ranges from 30% to 60%. The fraction of rejected
cells in jets corresponds to the number of cells expected from a Gaussian distribution
(between 2.5 and 4σ), and the effect is not dependent on the transverse energy (ET )
of the reconstructed jet [48], which confirms that the T42 algorithm indeed reduces the
number of noise cells.

1In these regions the rejection of cells between 2.5σped and 4.0σped does not improve the calorimeter
performance, either because the signal is too similar to noise or because the loss of signal does not
compensate for the rejected noise.
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3.1.2 Cone algorithm

DØ uses the Improved Legacy Cone Algorithm (ILCA) to reconstruct jets in its calorime-
ters [49].

The calorimeter energy is recorded in cells, which have an ηdet and φdet coordinate.
At this stage, the center of the detector is still used as a reference point. Massless four-
vectors are used to represent the cells. The spatial component in these four-vectors has
as length the energy of the cell, E, and points along the object’s direction with respect
to the center of the detector. The basic idea behind ILCA is that jets can be contained
in cones in (η, φ) space.

To start clustering, the algorithm chooses seeds. These are typically calorimeter towers
over a certain threshold. The distance between a tower object and seed in cone space is
then defined as

dR =
√

(∆ηdet)2 + (∆φdet)2, (3.1)

where ∆ηdet and ∆φdet are the angles between object and seed. If dR is smaller than
the chosen cone size R, typically 0.3 to 0.7, the cell’s four-vector is added to the seed
four-vector. The spatial components of the two four-vectors are added according to their
transverse energy. The process is re-iterated over all cells in the event until there is a
collection of stable seeds that contain most of the energy in the cones. The collections of
cells are then defined as the proto-jets in the event.

It can happen that two proto-jets overlap. One then has to decide whether two
proto-jets should be merged or kept as separate proto-jets. Here, a parameter called
the split/merge fraction f is used, which is defined as the ratio of the shared energy of the
proto-jets and the energy of the least energetic proto-jet. If the fraction is larger than f a
new center value is calculated for the proto-jet, and the cells outside its cone are rejected.
Otherwise, the cells are split between the proto-jets. In both cases, the algorithm is then
further iterated until a stable axis for the proto-jets is reestablished.

When all proto-jets are stable, the cells belonging to each proto-jet are used to calculate
the four-vector in physics coordinates. The stable and thus final proto-jets are called jets.
The jets in this thesis are reconstructed with a cone algorithm with a seed ET > 1 GeV. A
cone size of R = 0.5 and f = 0.5 are used. Before any additional corrections are applied,
reconstructed jets with ET < 8 GeV are rejected.

3.1.3 Jet ID

After reconstructing the jets, one has to reject poorly reconstructed jet objects, and
electrons and photons mis-identified as jets. Figures 3.1 and 3.2 show the selection criteria
used to reject fake jets, as applied to a very clean sample of back-to-back di-jet events:

• It is unlikely that much hadronic energy is deposited in the coarse hadronic calorime-
ter section. The coarse hadronic calorimeter is also more sensitive to noise because
of the large size of the readout cells. We require CHF < 0.4, where CHF is the
fraction of energy in the jet coming from the coarse hadronic part of the calorimeter;
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• There is also a requirement on EMF , the fraction of energy coming from the electro-
magnetic (EM) calorimeter: 0.05 < EMF < 0.95. One has to remember that
particle jets also have a significant π0 content, which mostly decay to two photons
that will shower in the EM calorimeter, so very low EMF values are unlikely. High
values of EMF are caused by electrons and photons that are mis-identified as jets;

• After application of these selection criteria, there are still some hot cells present in
our sample. Hot cells are defined as single cells that contain (a large amount of)
unattributed energy. The ratio of the transverse energy in the leading cell in the jet
to the next-to-highest leading cell in the event (HotF ) should reject jets that are
clustered from hot cells. We require HotF < 10;

• It is possible to reconstruct a jet that consists of one, single calorimeter cell. These
jets, created by single hot cells, are rejected by requiring that the number of towers
containing 90% of the jet energy (n90) is greater than 1;

• The noise in the precision readout electronics does not influence the energy measured
by the first-level jet trigger. We require that at least a fraction of the jet energy is
already present at the first trigger level. For this, we define the variable L1SET ,
which is the scalar sum of the transverse energy in all the L1 trigger towers in the
jet cone. We require that

L1SET

ET (1− CHF )
> 0.4 (3.2)

in the central and end cap calorimeter, and

L1SET

ET (1− CHF )
> 0.2 (3.3)

in the inter-cryostat detector (ICD) region, where there is no full L1 trigger coverage.
The L1SET cut is applied before corrections to the jet energy scale;

• There is a minimum jet energy:

ET > 15 GeV. (3.4)

This cut is made after energy scale and resolution corrections, as will be discussed
in the following sections.

3.1.4 Jet Energy scale

The jet energy that is measured in the calorimeter is not equal to sum of the energies
of the particles that created the jet in the detector. The difference is caused by detector
effects like non-uniform response to the deposited energy and calorimeter noise. It is also
possible that part of the shower falls outside the jet cone.
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Figure 3.1: Quantities used for jet identification: (A) the coarse hadronic fraction (CHF );
(B) the electromagnetic fraction (EMF ); (C) the hot cell fraction (HotF ) and (D) the
number of towers containing 90% of the jet energy (n90).
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Figure 3.2: L1SET versus ET (1 − CHF ) for central and forward jets (left) and jets in
the ICD region (right).
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Figure 3.3: Jet Energy Scale correction and errors for jets in data. Shown are the cor-
rection as a function of jet energy E (A) and pseudo-rapidity |η| (C). Also shown are the
uncertainties of the correction as a function of E (B) and |η| (D).
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the uncertainties of the correction as a function of E (B) and |η| (D).

To correct the calorimeter jet energies back to parton level, a jet energy scale (JES)
correction CJES is applied. As the calorimeter behavior is not necessarily correctly mod-
eled in Monte Carlo simulation, it is also necessary to correct simulated jets. The JES is
also used to correct the missing transverse energy 6ET in the calorimeter.

The particle level or true jet energy, Epart
jet , reconstructed with a cone algorithm with

cone size R, is obtained from the measured jet energy Emeas
jet using the relation

Epart
jet =

Emeas
jet − EO(R, η,L)

Rjet(R, η,E)S(R, η,E)
= CJES(Emeas

jet , η, R,L) · Emeas
jet . (3.5)

Usually, the total correction is applied to the initial energy Emeas
jet as a multiplicative factor

CJES(Emeas
jet , η, R,L). The inputs for CJES are:

• EO(R, η,L) is the offset created by detector and electronic noise, pile-up energy
from previous collisions and the extra energy added by the underlying physics event
and possible additional events. The dependence on the luminosity L is caused by
the fact that the number of additional interactions is dependent on the luminosity;

• Rjet(R, η,E) parametrizes the energy response of the calorimeter. In principle this
should only be dependent of η and E, but the dependence on R is caused by the
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fact that only part of the jet energy is measured in the cone. Hence, the response
is different for jets with different cone sizes;

• S(R, η,E) represents the fraction of the particle jet that is deposited inside the
jet cone. This out-of-cone showering correction depends on the cone size, and also
slightly on the energy of the jet and location in the calorimeter.

The JES is measured directly using ET conservation in γ + jet events. In the simplest
case, the jet balances the photon in the transverse plane. As the energy of the photon
is measured accurately2, the true jet energy can be derived. The η and E distributions
of the jets are fit, where there are uncertainties coming from the fit (statistical) and the
method (systematic).

Figures 3.3 and 3.4 show the JES corrections C and errors dC on the measurements for
data and Monte Carlo events, respectively. Shown are the JES scale factors for uncorrected
jets, as a function of the (uncorrected) reconstructed jet energy and η. Typical scale
factors are around 1.4± 0.06 for jets from data (Emeas

jet around 50GeV), and 1.3± 0.08 for
Monte Carlo jets. The uncertainties, which are dominated by the systematic correction
for the out-of-cone showering S(R, η,E), become very large (0.2− 0.3, approximately 15-
20% of the total correction) at low jet energies. The errors are uncorrelated for the Monte
Carlo and data.

3.1.5 Jet energy resolution

The jet energy resolution, which is very similar to the calorimeter energy resolution (Sec-
tion 2.2.5), can be measured in γ + jet data (for low jet energies) and di-jet data for
higher jet energies using the asymmetry (ET1 − ET2)/(ET1 + ET2) [51].

The jet energy resolution:

σET
ET

=
N

ET
⊕ S√

ET
⊕ C (3.6)

is measured in different bins of ηdet of the jet, and is limited by low statistics in the γ +
jet sample. The data are fit to the function given in Equation 3.6. See Tables 3.1 and 3.2
for the fit values. The measured values of N , S and C are different for data and Monte
Carlo jets. The di-jet sample is not available for lower energy measurements because it is
collected on a single-jet trigger which is not fully efficient for jets with ET < 50 GeV.

3.1.6 Jet efficiency

The jet identification is on average over 99% efficient [51] above a threshold of ET >
50 GeV. The fake rate was measured to be 4%, where both di-jet events with extra (fake)
jets and W+4 jet data for jets without tracking confirmation yielded the same result.

2The electro-magnetic calorimeter response of photons and electrons can be measured using different
mass resonances like Z → e+e−, J/ψ → e+e− and π0 → γγ data [50]. As the masses of these particles are
known up to high accuracy, they can be used to determine the energy scale for electrons (and consequently
photons).
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N [GeV] S [GeV0.5] C
0.0 < |ηdet| < 0.5 4.26 0.658 0.0436
0.5 < |ηdet| < 1.0 4.61 0.621 0.0578
1.0 < |ηdet| < 1.5 3.08 0.816 0.0729
1.5 < |ηdet| < 2.0 4.83 0.0 0.0735

Table 3.1: Jet resolution constants for Monte Carlo jets.

N [GeV] S [GeV0.5] C
0.0 < |ηdet| < 0.5 5.05 0.753 0.0893
0.5 < |ηdet| < 1.0 0.0 1.200 0.0870
1.0 < |ηdet| < 1.5 2.24 0.924 0.1350
1.5 < |ηdet| < 2.0 6.42 0.0 0.0974

Table 3.2: Jet resolution constants for data jets.

However, the efficiency to reconstruct and identify a jet is a more useful figure of merit.
Table 3.3 lists the combined jet identification and reconstruction efficiency for the three
different calorimeter ranges.

3.2 Tracks

The passage of charged particles through the SMT and CFT detectors results in a collec-
tion of hits containing 2D or 3D position information. A tracking algorithm reconstructs
the trajectory of the particle by combining the corresponding hits in a particle track. The
DØ tracking algorithm is based on Kalman filtering [43, 44].

3.2.1 Track resolution and efficiency

The momentum resolution of a track is given by

σpT
pT

=

√
0.0152 + (

0.014 pT
GeV/c

)2 (3.7)

The impact parameter resolution of a reconstructed track is measured to be 21 µm for
tracks with pT > 10 GeV/c[55]. The tracking efficiency depends on the location in the
detector and the track pT . For Z → µ+µ− data (track pT > 10 GeV/c), the efficiency
to reconstruct a track is 99%, with a fake rate of 2%. For tracks with lower pT (pT >
0.5 GeV/c) the efficiency is 92%, with a fake rate of 3% [45].

The tracking inefficiency in Monte Carlo is around 10-40% smaller, again dependent
on ηdet and pT .
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calorimeter region efficiency [%]
central (|ηdet| < 0.8) 98.5± 0.4

ICD (0.8 ≤ |ηdet| < 1.5) 94.8± 0.5
end cap (|ηdet| ≥ 1.5) 97.8± 0.6

Table 3.3: Average jet identification+reconstruction efficiency for the three different
calorimeter ranges [52]. The listed efficiencies are for jets with ET > 50 GeV/c2.

3.2.2 Tracks in jets

It is only possible to reconstruct secondary vertices within a jet if two (or more) tracks
are present inside the jet cone. Jets which pass this requirement are considered taggable.
The efficiency for a jet to be taggable is called taggability. Taggable jets are jets which:

• contain at least two tracks with pT > 0.5 GeV/c and χ2/NDOF < 3 of the track fit,
both within a distance of dR < 0.5 with respect to the jet axis;

• all tracks should have least two SMT hits in the two inner layers of the silicon.
Tracks that do not pass this requirement but have three or more SMT hits are also
used.

Figure 3.5 shows the fraction of taggable jets in data and Monte Carlo, as a function
of the jet ET and η. The average taggability is 82.1% on data. For Monte Carlo jets,
the average taggability is 93.7%. The difference between data and Monte Carlo events
is directly connected to the difference in tracking efficiency as described in Section 3.2.1.
Only events with six or more jets are used, as the taggability has been shown to be
dependent on the number of jets in the event [46].

3.3 Electrons

The reconstruction of EM objects is based on calorimeter cells from the electromagnetic
layers in the calorimeter. However, the first layer of the hadronic calorimeter is included
in the energy measurement. A cone algorithm with R = 0.2 is used to reconstruct the
calorimeter EM objects. For electrons, the EM object is matched to a central track, where
the track is required to be within ∆η < 0.05 and ∆φ < 0.05. The axis of the EM object
in the calorimeter is used for the electron coordinates.

3.4 Muons

To reconstruct a muon, two different detector systems are used: The muon detector and
the central tracker. The tracking algorithm used for reconstruction of tracks in the muon
system is similar to the algorithm used in central track reconstruction (Section 3.2).
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Figure 3.5: The taggability of jets as a function of the jet ET (left) and |η|. Shown are
the distribution for data jets in events with six or more jet events (line) and jets in tt
all-jets Monte Carlo events, also with six or more jets.

3.4.1 Local muons

A local muon consists of a track that has been reconstructed using only information from
the muon system.

The algorithm first reconstructs separate track segments in the three different layers
of the muon system. Segments from different layers are combined in a local muon track.
Only muons constructed of segments from all three layers of the muon system are used
in this analysis.

An extra requirement is made on the timing information of the scintillator hits. Muons
collected outside a time window of ±10 ns of the beam crossing are rejected because they
are most likely created by muons coming from cosmic ray background.

3.4.2 Global muons

Local muon tracks can be combined (matched) with a central track. Muons that have
a central track match are referred to as global muons. A reliable central track match is
important, since the central track momentum is measured with much better resolution
than the local muon.

The efficiency of the complete global muon selection was measured to be εdata =
65± 5 % for data, and εMC = 71± 1% for Monte Carlo muons. The ratio, εdata/εMC , is
compatible with unity [53, 51]. Muons with a transverse momentum (pµT ) of pµT < 4 GeV/c
are rejected. Also, the muon is required to be within |ηdet| < 2.
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ers) and b-jets from tt̄ Monte Carlo
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3.4.3 Muons in jets

A jet is considered a heavy quark candidate if at least one global muon with pµT > 4 GeV/c
is found inside the jet cone, so dR < 0.5 between the muon and the jet. Some additional
requirements are made to further reject background of high-energy cosmic rays and ener-
getic muons coming from decays other than the jet decay:

• The distance of closest approach in z, ∆z, is required to be less than 5 cm between
the track and the primary vertex. This requirement is used to reduce remaining
background from cosmic ray muons and badly reconstructed tracks. As the typical
decay length of a B meson is in the order of a few mm, this does not influence the
selection of b candidate jets containing muons.

• The maximum pµT is limited by the jet ET ; muons at very high pµT (> 100 GeV/c) are
not consistent with the heavy-quark jet hypothesis, and are expected to be caused
by muons from other physics processes that just happen to be caught inside the jet
cone. A cut of pµT/E

jet
T < 1c−1 is required.

Soft muon tag efficiency

The soft muon tagging efficiency has been measured using several methods to reduce the
systematic uncertainty. Di-jet data and bb̄, cc̄ and QCD Monte Carlo events are studied.
The reconstruction efficiencies for low pT (< 20 GeV/c) muons are found to agree within
errors:

εdata
εMC

=
(69.2± 3.8)%

(67.5± 1.2)%
= 1.025± 0.060. (3.8)
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This value is used to correct the muon-tagging efficiencies estimated in Monte Carlo
events, and shows no significant dependence on η or φ. The discrepancies between MC
and data become smaller when the jet ET is increased.

Figure 3.6 shows the distribution of pµT/E
jet
T for high-ET di-jet bb̄ events. These events

were selected by a study of back to back di-jet events with a muon in the leading jet.
The away jet is then searched for a muon. If a muon is present, the away jet is used for
efficiency studies. The efficiency of the pµTE

jet
T < 1 cut is 0.975 ± 0.009 for any jet, and

increases to 0.99 ± 0.02 for jets with ET > 40 GeV, the ET regime of the jets from tt
decays. Again, there are no discrepancies between data and muon tagged b-jets coming
from tt Monte Carlo events.

3.5 Isolated leptons

Leptons coming from processes like W and Z decay are expected to be very energetic and
isolated from any other physics objects in the detector [51]. Events that contain isolated
leptons are rejected, as no isolated leptons are expected in the tt all-jets event signature.

Isolated muons are required to have pµT > 15 GeV/c, and should be associated with a
track that originates from the PV. There are also requirements on the (lack of) calorimeter
energy near the muon and there is a veto on the presence of additional tracks very close
to the muon track [51].

Isolated electrons are also required to have peleT > 15 GeV/c. Most of the electron’s
energy is required to come from the electro-magnetic calorimeter, no energy contribution
from the coarse hadronic calorimeter section is allowed. The electro-magnetic shower
shape is required to be consistent with an electron. The associated track has to originate
from the PV. An electron likelihood discriminant [54] is used to reject fake electrons.

3.6 Vertices

At DØ, we distinguish between the primary vertex (PV), which comes from the hard pp
scattering process, and possible secondary vertices (SV), which come from particles that
travel a distance before decaying to other particles.

3.6.1 Primary vertex

To measure the location of the primary vertex, we go through the following steps:

• The tracks are required to originate from near the beam line. The algorithm locates
the beam, the location in x, y space where the pp beam passes through the detector.
Only tracks with a distance of closest approach (DCA, see Figure 3.7) in the x, y
plane which is consistent with the beam line are included in the fit. The requirement
on the track is made by a cut on the DCA significance DCAxy

σDCAxy
≡ S(0,0) < 100 with

respect to the beam line;
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L

DCAPV

SV
Figure 3.7: Definition of some
track and vertex parameters: The
distance of closest approach (DCA)
of a track (line) to the primary ver-
tex (PV) and the decay length L
(dashed line) of a secondary vertex
(SV), the distance between the PV
and SV. The dotted lines represent
tracks from the PV.

• Only tracks of good quality are used. At least two SMT hits are required, pT ≥
0.5 GeV/c and the DCA significance (measured in x, y, z), S0,0,0, is required to be
less than 5. The selected tracks are assigned to the vertex candidates, and the
candidate with the largest average track pT is identified as the primary vertex;

• Events with a primary vertex outside the tracking volume are rejected by requiring
|zPV | < 60 cm.

The average efficiency of the PV reconstruction has been measured to be 98% on mul-
tijet data. The inefficiency originates from events with a PV outside the SMT barrel
volume. Inside the SMT barrel the PV reconstruction efficiency is 100%. The accuracy
to reconstruct a primary vertex is approximately 15 µm in x, y and 30 µm in z.

3.6.2 Secondary vertices

The (relatively) long lifetime of the B meson makes it possible to identify the location of
the decay vertex of the B meson. It is necessary to know both the primary vertex and the
track location up to 10-50 µm accuracy to make a reliable reconstruction of the secondary
vertex.

We use an algorithm called the secondary vertex tagger (SVT), which reconstructs
secondary vertices from the tracks in the event. A very detailed description of the algo-
rithm for primary and secondary vertex reconstruction can be found in [55]. The SVT
algorithm consists of the following steps:

• Construct track-jets with the cone algorithm, using tracks instead of calorimeter
cells. Only tracks with pT > 1 GeV/c and DCA significance SDCA > 3 are consid-
ered, where the DCA is with respect to the primary vertex. Every track-jet with at
least two selected tracks is searched for secondary vertices;

• We then use the build-up algorithm to build secondary vertices. The algorithm fits
all combinations of tracks in the jet. The next step is to attach additional tracks to
the secondary vertex. Tracks can be assigned to several secondary vertices;
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• Extra requirements are placed on the candidate secondary vertices: the transverse
decay length3 |Lxy| < 2.6 cm, the lifetime significance | Lxy

σLxy
| > 7, collinearity > 0.9

and the χ2/dof < 10 of the secondary vertex fit. The vertex transverse decay length
Lxy is defined as the distance between the SV and PV (Fig 3.7) in the transverse
plane. The collinearity gives a measure for how much the tracks assigned to the SV
actually point toward the PV;

• Since we use the SV to identify the presence of a B meson in the jet, we reject
secondary vertices that are consistent with K0

S, Λ0 and γ → e+e−;

• Next, the track-jets are matched to calorimeter jets. The track-jet is required to be
within dR < 0.5 of the calorimeter jet.

A calorimeter jet is considered tagged if it contains a track-jet with a selected secondary
vertex. We do not consider vertices with a negative lifetime.

3.6.3 Secondary vertex tagging efficiency
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Figure 3.8: Measured SVT-tagging probabilities, derived from a muon-tagged di-jet data
sample. The probability to tag a b jet as measured in data is shown on the left; the right
plot is the efficiency to identify jets coming from a c-quark. The solid curve represents
jets in the central detector region (η < 1.25). The dashed and dotted lines represent more
forward jets, respectively in the range 1.25 < η < 1.75 and 1.75 < η < 2.5.

The SVT tagging efficiency is measured on a sample enriched in bb̄ production, as
described in [46]. A sample of back-to-back di-jet events is used, where the b-content is
increased by the requirement of one jet with a soft muon tag. Additional cuts are used

3The inner radius of the silicon detector is r = 2.6 cm.
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SVT efficiency per jet flavor
MC data

b-jets 0.52 0.39
c-jet 0.13 0.11

light q-jet 0.003 0.006

Table 3.4: The probability to tag jets of different flavor, for jets from a tt̄ all-jets Monte
Carlo sample after preselection. These jets are central (|η| < 2) and have a typical ET of
around 50 GeV. Shown are the efficiencies measured on Monte Carlo jets (MC tagging)
and efficiencies when the behavior of data-jets is used. The errors on these numbers are
completely dominated by Monte Carlo statistics and do not represent the uncertainty on
the b/c/light quark tagging efficiency.

to further increase the b and c quark content of the sample4. As the away jet is expected
to also come from the bb̄ decay, the efficiency to tag this jet is used to derive the SVT
tagging efficiency for b jets in data. All efficiency measurements are done as a function of
jet ET and in three η bins.

The SVT efficiencies are different for Monte Carlo simulation and data. This is dom-
inated by the difference in tracking efficiency, particularly in the low pT regime. There
also is a separate correction for the difference in taggability in Monte Carlo simulation
and data (See Section 3.2.2).

The b tagging efficiency is corrected for the ratio in efficiency, SFb, of the away jets of
soft lepton tagged bb̄ events in data and Monte Carlo:

SFb(ET , η) =
εdatab (ET , η)

εMC
b (ET , η)

. (3.9)

SFb is measured as a function of jet ET and η, see [46] for details. It is not straightforward
to measure the c quark content in data, so we assume that the c jets behave relatively
the same as b jets in data and Monte Carlo simulation: SFb = SFc.

Figure 3.8 shows the efficiencies to tag b and c quarks as a function of jet ET and η.
Typical b tagging efficiencies are around 42% for central jets with ET around 50 GeV. The
efficiency to identify c jets is 11%. The light quark efficiency is also measured in data,
using a γ+jets sample, where the b content is suppressed. Table 3.4 lists the average
efficiency per jet, for jets in tt all-jets Monte Carlo events. Two methods are used: just
applying the SVT algorithm on the Monte Carlo jets (‘direct MC tagging’) and applying
the efficiency as a function of the jet’s η and ET , measured on data as described in the
previous paragraphs.

4To increase the b content of the µ-tagged jet, a cut is placed on a variable called pTrel . pTrel is defined
as the relative transverse momentum of a muon with respect to the jet axis. Muons originating from
weak (b) decays are expected to have a larger pTrel than muons coming from light quark and pion decays.
This variable is not used directly in the analysis presented in this thesis; further detailed studies can be
found in [12].
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Chapter 4

Event samples

In this Chapter we will define the different event samples used in this thesis. First, the
data collection with the DØ detector and trigger system will be discussed. Then, the
samples of simulated tt to all-jets signal events will be studied. Finally, the preselection
criteria will be presented.

4.1 Dataset selection

This section describes the processing of events to provide the datasets used in this thesis.

4.1.1 Data quality requirements

Only data that passed the following quality criteria are used [51]:

• The run has to pass certain detector quality requirements. This information is
provided by the particular sub-detector working group, and is either determined
by the shifter during data taking or by a detector expert doing raw data quality
studies. The main purpose of this selection is to immediately reject runs where
certain sub-detectors are turned off. The state of each sub-detector for data taking
is stored in a database [56].

• The reconstructed physics objects have to be of sufficiently good quality. This is
again dependent on the detector performance, but is determined after reconstruction
of the data. The quality is determined by comparing measured quantities to typical
averages. For instance, runs with an average 6ET significantly different from 0 are
indicative of malfunctioning calorimeter regions and are thus rejected.

• The luminosity is measured per trigger and per luminosity block, which is typically
about one minute of data taking. If there is a problem with the trigger configuration
or luminosity measurement, the appropriate luminosity block is flagged as bad. We
reject the corresponding data from the luminosity calculation and the analysis.

Two different good-run configurations are used. Both require good calorimeter and track-
ing performance, including reasonable muon system performance. For analyses that use
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soft muons we also require that the muon system is good, which reduces the available
sample.

4.1.2 Trigger requirements

The data collection at DØ is done with sets of triggers to record the events of interest. For
the data collection period covered in this thesis various triggers were used. Occasionally
the trigger configuration and the trigger requirements change. As there are limitations
to the total output rate, the triggers have to be adapted to provide the same output
rate when the instantaneous luminosity increases. A complete set of triggers running
simultaneously is called a trigger list.

Trigger lists are distinguished using version numbers. The dataset used in this analysis
uses trigger lists ranging from version 8 (v8) through 12 (v12). Events were collected using
the 4jt10 trigger (lists v8 through v11) or 4jt12 trigger (v12 trigger list). Both triggers
were optimized for collection of tt all-jets events. The triggers are configured in such a
way that they are also sensitive to other physics processes with similar (multijet) event
signature.

Both triggers require at least 4 jets, and there is also a requirement on the total
transverse energy in the event. The definition of the triggers used in this analysis is:

• 4jt10; used in trigger lists v8 - v11:

L1: cjt(4,5)

- Four trigger towers with ET > 5 GeV.

L2: 3jet8 ht90

- Three jets with ET > 8 GeV and total L2HT > 90 GeV.
The L2 HT cut is not applied in trigger list v8.

L3: mp160 jet(scjet 9,4,10.) jet(scjet 9,2,20.)

- Four jets with ET > 10 GeV, of which two with ET > 20 GeV.
The jet(scjet 9,2,20.) cut was not made in trigger list v8.

• 4jt12; used in trigger list v12:

L1: cjt(3,5)

- Three trigger towers with ET > 5 GeV.

L2: 3jet8 ht50

- Three jets with ET > 8 GeV and total L2HT > 50 GeV.

L3: mp160 jet(scjet 9,4,12.) jet(scjet 9,3,15.) jet(scjet 9,2,25.)

- Four jets with ET > 12 GeV, of which three with ET > 15 GeV and two
with ET > 25 GeV.

The efficiency of these trigger terms will be studied in Section 4.3.
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4.2 Integrated luminosity

trigger list name L (standard) L (good µ) all recorded L
v8 4JT10 20.8 pb−1 20.7 pb−1 25.8 pb−1

v9 4JT10 29.1 pb−1 19.8 pb−1 32.6 pb−1

v10 4JT10 15.8 pb−1 15.5 pb−1 16.2 pb−1

v11 4JT10 57.8 pb−1 57.7 pb−1 60.7 pb−1

v12 4JT12 38.9 pb−1 36.1 pb−1 40.3 pb−1

v8-12 total 162.5 pb−1 149.9 pb−1 175.6 pb−1

Table 4.1: Integrated luminosities for the different trigger list versions. The standard
sample is used for the main analysis in this thesis.

The integrated luminosity of a data sample is measured for the trigger version used
to collect the sample. Table 4.1 shows the collected luminosity per trigger version, after
application of the good run list. The loose muon sample, with an integrated luminosity
of L = 162.5 pb−1, is used when no tight requirements on the muon quality are needed.
Further on in this thesis, an analysis that uses muons for b jet identification is presented.
The tighter requirement on the muon reconstruction then reduces the size of the usable
data sample for the muon tag analysis to L = 149.9 pb−1.

4.3 Trigger efficiency

The probability that an event passes the different trigger levels is parametrized as a
function of individual trigger objects. For jet triggers, the trigger efficiency is measured
as a function of the transverse momentum of the reconstructed jet. From the single object
efficiencies, the efficiency per event can be calculated. This method can also be used to
calculate other efficiencies where the efficiency is known on jet-level.

Under the assumption that the probability to trigger on a given jet has no dependence
on whether other jets in the event also fired the trigger, the event probability can be
expressed as a product of the individual jet probabilities Pi, where i are the different jets
in the event. For example, one can write the probability for an event to have exactly no
jet trigger in an event with N jets as

Pevent(0, N) =

i≤N∏

i=1

(1− Pi). (4.1)

In general, the probability that k jets fire the trigger in an event with N jets is written as

Pevent(k,N) =

i,j≤N∑

all perm.

(
i≤k∏

i=1

Pi

k<j≤N∏

j 6=i
(1− Pj)

)
. (4.2)
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Combining trigger requirements

In the analysis discussed in this thesis, several trigger levels are combined. To determine
the trigger efficiency for a given event, the overall trigger efficiency can be written as

P (L1× L2× L3) = P (L1)× P (L2|L1)× P (L3|L1 L2) (4.3)

where P (L1) is the probability that the event passes the level 1 trigger, P (L2|L1) is the
probability that an event that passes the first level trigger also passes the L2 trigger and
P (L3|L1 L2) is the probability that an event that passed trigger levels 1 and 2 also passes
the third trigger level. The next sections describe the efficiency of the tt all-jets triggers
more elaborately.

Single object trigger efficiencies

The probability to fire a jet trigger can be parametrized in terms of the (JES corrected)
ET , and detector η of the jet : Pjet(ET , ηdet). A dedicated dataset is used to measure
jet trigger efficiencies. This dataset is collected with single electron triggers, to avoid a
trigger bias. We require the events in our sample to pass the following requirements:

• good run list. The event should pass all detector and data acquisition quality cuts
that are also applied in the tt analyses;

• good electron. The event should contain exactly one electron. The single electron
should have fired the electron trigger with which this data sample was collected.
If any other electrons are present in the event it is possible that ambiguities are
introduced, as electrons can also fire jet triggers. The electron is required to have
an energy above 10 GeV on the second trigger level, and 15 GeV after the full
reconstruction;

• jet multiplicity. To include possible effects due to high calorimeter occupancy, we
disregard events with three or less jets; this accounts for possible correlations in the
jet trigger.

L1 turn-on curves

We now measure the first level trigger efficiencies for three different bins of detector η:
The central calorimeter (CC, |ηdet| < 0.8), the inter-cryostat region (ICD, 0.8 < |ηdet| <
1.5) and the end-cap calorimeter (EC, |ηdet| > 1.5). Figure 4.1 shows the measured L1
efficiencies at the jet-level. The trigger behavior is fitted with a basic turn-on curve:

f(x) =
1

2
p
(
1 + Erf(

x− h
s
√
x

)
)
, (4.4)

where p is the value of the function plateau, h is the value of x where f(x) is equal to
half the plateau and s is the slope of f(x) in h. Erf is the basic Gaussian error function.
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Figure 4.1: First level trigger efficiencies for the three different calorimeter ranges, as a
function of the JES corrected jet ET . The line represents a fit to the data, using a basic
turn-on function.
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Figure 4.2: Second level trigger efficiencies for the three different calorimeter ranges, as
a function of the ET of jets, after JES correction. Only jets that pass the L1 trigger are
used. The line represents a basic turn-on curve that is fitted to the data. The errors on
the fit will be taken into account as a systematic uncertainty on the trigger efficiencies.

In the CC and EC calorimeter the L1 trigger becomes fully efficient above approxi-
mately ET > 60 GeV, while in the ICD region the turn-on is even more slow. The errors
on the plateau efficiency are of the order of 0.4%. Typical jets in a tt all-jets event have
an ET around 50 GeV. The slow turn-on at the first trigger level is the most important
source of inefficiency for the signal.

Higher level trigger turn-on curves

On the second and third trigger level, the focus is more on background rejection as the
signal efficiency is approximately 100%.

On the second trigger level the jets are again parametrized in three bins of ηdet. Fig-
ure 4.2 shows the three second level trigger efficiencies as a function of jet ET . As only
jets that passed the L1 trigger are used, and the L1 information is also used as seed for
the L2 jets, the efficiency for reconstructed jets over 15 GeV is already at its maximum
for jets near the ET threshold of 15 GeV.

Additionally, an global event-based requirement is used. The variable HT , which is
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Figure 4.3: Second level trigger efficiencies for two different L2HT cuts, as a function of
the sum of the transverse energies of all jets, HT . Only events that pass the L1 trigger
CJT(3,5) are used. The line represents a basic turn-on curve that is fitted to the data.
The errors on the fit will be taken into account as a systematic uncertainty on the trigger
efficiencies.

used very often in this thesis, is defined as:

HT =

Njets∑

jet=1

ET (jet), (4.5)

the scalar sum of the ET ’s of the jets in the event. This variable is a good probe for
energetic multijet physics, for example hadronic tt or Higgs production, where we expect
large values of HT . At the second trigger level, there is a requirement on L2HT , the sum
of the ET of all L2 jets in the event. Figure 4.3 shows the behavior of the L2HT trigger
as a function of the reconstructed HT . For both the L2 jets and L2HT efficiencies the
data is fit with the same function as the L1 trigger efficiency (line).

The instantaneous luminosity of the Tevatron determines the number of hard interac-
tions per second. During the collection of the data used in this thesis, the instantaneous
luminosity increased significantly. The third level jet trigger requirements change drasti-
cally per version of the trigger list, as the L3 trigger is used to fix the output rate of the
all-jets triggers to about 5 Hz. Most of the third level triggers have tight requirements on
the two most energetic jets, to reduce the background rate from QCD di-jet events. Four
jets are required to have fired in total. The efficiency of the L3 jet triggers for the v8
through v11 trigger lists is shown in Figure 4.4, where in the v8 list only the 10 GeV L3
jet ET requirement was used. The efficiencies for the jet trigger requirements used in the
v12 trigger configuration can be seen in Figure 4.5. Again, the triggers are parametrized
in the three different detector η bins that represent the CC, ICD and EC calorimeter
region. Only jets that passed L1 and L2 are used.
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The L3 trigger uses the precision readout which is known to add additional noise. At
the third-level trigger there is also the requirement of the presence of a primary vertex, to
reject events that consist only of calorimeter readout electronics noise. The slope in the
efficiency plateau is caused by the requirement of the presence of a well-defined primary
vertex at L3. The slow saturation after the initial sharp turn-on is attributed to remaining
noise jets in the sample, which lower the measured efficiency. The basic fit function for
the turn-on curves was modified to include the slope in the plateau. However, even after
the correction for this slope the fit is not optimal. This effect is included in the error
estimate on the L3 jet triggers. The errors on fits for the trigger efficiency will be taken
into account as a systematic uncertainty on the trigger efficiency.
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Figure 4.4: Third level trigger efficiencies for the three different calorimeter ranges, as a
function of jet ET . The terms shown are used in the v11 and earlier versions of the trigger.
Only jets that pass the L1 and L2 trigger requirements are used. The line represents the
fit of a turn-on function with an additional slope. The errors on the fit are taken into
account as a systematic uncertainty on the trigger efficiencies.
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Figure 4.5: Third level trigger efficiencies for the three different calorimeter ranges, as a
function of jet ET . Shown are the terms used in the v12 version of the trigger. Only jets
that pass the L1 and L2 trigger requirements are used. The line represents the fit of a
error function with an additional slope. The errors on the fit are taken into account as a
systematic uncertainty on the trigger efficiencies.
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Figure 4.6: The total (L1×L2×L3)
trigger efficiency as a function
of HT , determined for tt all-jets
Monte Carlo by using efficiencies
determined on data. The efficiency
is obtained by convolution with the
jet-based turn-on curves from Fig-
ures 4.1 through 4.5.

4.3.1 Overall trigger efficiency

Luminosity weighting

It is now possible to determine the efficiency to collect a tt all-jets event with the signal
triggers. Since the efficiency depends on the version of the trigger, the total trigger
efficiency is defined as the luminosity weighted average of the separate trigger efficiencies
εtrigi , so

εtrigtot =
εtrigv8 · Lv8 + εtrigv9 · Lv9 + εtrigv10 · Lv10 + εtrigv11 · Lv11 + εtrigv12 · Lv12

Ltot
, (4.6)

where Li are the luminosities for the different trigger versions as listed in Table 4.1 and
εtrigi changes per trigger configuration as described in Section 4.1.2.

Trigger efficiency

The total trigger efficiency εtrigtot is calculated on an event-by-event basis, and depends of
the number of jets in the event and on HT . Figure 4.6 shows the total trigger efficiency,
εtrigtot , as a function of the JES corrected HT for a sample of six-jet tt all-jets events. In
the regime where the tt all-jets events are expected (six or more jets, HT > 350 GeV),
the efficiency is over 85%. Above HT > 400 GeV, the plateau efficiency is 0.943± 0.004.
The average efficiency for the different trigger levels is presented in Figure 4.7. The loss
in efficiency for tt signal is dominated by the L1 inefficiency. The trigger efficiency on an
event basis is used as an event weight in the final efficiency calculation.
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Figure 4.7: Efficiency for tt̄ all-jets Monte Carlo events, as a function of JES corrected
HT , for the three different trigger levels. As can be observed from the leftmost figure, the
inefficiency is almost completely dominated by L1.

Rates

The average triggering rate for the v11-v12 triggers is around 35-40 Hz at L1, 10-20 Hz at
L2 and 4-5 Hz at L3, for runs with an instantaneous luminosity of around 80·1030 cm−2s−1,
which is typical for the period when the data was collected. Higher instantaneous lumi-
nosities mainly affect the first and second level trigger rates, particularly in the v12
trigger.

4.3.2 Trigger simulation and Monte Carlo

For comparison, we also simulate the trigger response using Monte Carlo techniques [59].

During the development of the 4jt10 and 4jt11 triggers, the predicted efficiency was
between 98% (v8 version) and 91% (v12 version), which is consistent with the results
measured in data. The major difference between data and Monte Carlo is that in the
simulation the L1 efficiency has a faster turn-on, which also causes the total trigger
efficiency to become fully efficient earlier.

To study the trigger simulation, we compare it to the efficiency measured using turn-
on curves similar to Figures 4.1 through 4.5, but measured on trigger simulated tt all-jets
Monte Carlo events instead of data. Figure 4.8 shows the performance of the complete
trigger chain as a function of HT , from Monte Carlo and through application of the turn-
on curves. The difference between the two curves is a measure for how well the jet-based
parametrization method predicts the total efficiency. The trigger simulation also models
the correlations between the triggered jets. The fact that there is only a small difference
between the two curves means that the correlation between the jets is a small effect. The
difference between the two fitted curves in Figure 4.8 is used as a systematic uncertainty
on the measurement of the trigger efficiency.
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Figure 4.8: The total (L1×L2×L3)
trigger efficiency as a function
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4.4 Simulated signal

In the Monte Carlo simulation, a top mass of mt = 175 GeV/c2 (with Γt = 0) is used. The
W boson mass is set to 80.4 GeV/c2. After the Monte Carlo event generation, the particles
from simulated tt events are processed through d0gstar [30], a geant3 [31] simulation
of the DØ detector. D0gstar is a full detector simulation, including the plate geometry
of the calorimeter. Additional minimum bias proton-antiproton events are added to the
Monte Carlo events. The number of minimum bias events follows a Poisson distribution
with a mean of 0.8. The detector response is simulated by d0sim [32]. The simulated tt
events are reconstructed with the same reconstruction chain as data.

We will examine how well the tt events can be reconstructed after the whole detector
simulation and reconstruction is applied.

4.4.1 Parton-level kinematics

To compare Monte Carlo events to data, we can only use reconstructed physics objects.
In the tt all-jet channel we are experimentally restricted to jets that originate from quarks
and gluons. This section studies the behavior of jets that are matched to partons.

Jet matching

To define a jet as coming from a certain Monte Carlo parton, we require the parton from
t or W decay to be close to the jet axis. A requirement in η, φ space of dR < 0.3 is
used to match the jet and the Monte Carlo parton. The dR distribution between jets
and partons in tt all-jets events can be seen in Figure 4.9. If a jet is within dR < 0.3
of a Monte Carlo parton, the jet is referred to as ‘Monte Carlo matched’. This method

57



Event samples

dR
0 0.1 0.2 0.3 0.4 0.5
0

2000

4000

6000

b quarks
light quarks

Figure 4.9: Distance in R space
between Monte Carlo parton and
closest jet, as observed in tt all-jets
Monte Carlo. A cut of dR < 0.3 is
applied for the jet to be considered
matched to a parton. The solid
(dashed) curve represents the dis-
tribution for b (light) quarks.

matches 93% of all partons from the hard interaction to a jet. Only 19% of all tt all-jets
events have all partons matched to jets. The reason for this will become clear shortly.

W bosons and b jets

To identify top events, first it is necessary to identify the decay products of the top quark:
W bosons and b quarks.

The jets are selected with the same selection criteria as in data: ET > 15 GeV. The
left-hand plot in Figure 4.10 shows the ET distribution of jets matched to a b quark.
The ET distribution is expected to be diluted by neutrinos from the B-meson decay that
cannot be detected. The jet energy scale correction does not account for this effect, which
explains the shift to lower jet ET . For W bosons in tt all-jets events, two jets have to be
identified. The right-hand plot in Figure 4.10 suggests that there is a bias towards higher
transverse momenta, which is to be expected given the jet ET requirement.

The result of the mass reconstruction of the W bosons in tt all-jets events can be seen
in Figure 4.11. Figure 4.11 only shows those tt events that have all jets matched to a
quark (19% of the total number of events). From a Gaussian fit to this distribution we
obtain:

MW = 83.7± 0.12 GeV/c2; (4.7)

and

σW = 12.3± 0.2 GeV/c2. (4.8)

Thus, given the input W boson mass of 80.4 GeV/c2, there is a bias towards larger
reconstructed invariant masses. Furthermore, the MW distribution in Figure 4.11 exhibits
a non-Gaussian tail at high invariant masses.
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Figure 4.10: Transverse energy of b quarks (left) and di-jet reconstructed W bosons
(right) in tt̄ → all-jets events, for parton-level (dashed line) and reconstructed jet-level
(solid line).
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Figure 4.11: Reconstructed mass
of W bosons, where all partons
have a reconstructed jet matched
to them within dR < 0.3. The jets
are used to calculate the invariant
mass. Also shown is the distribu-
tion when the jets are not correctly
assigned to the W boson (dashed
histogram). The curve is a Gaus-
sian fit.
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The origin of the tail in the W boson mass spectrum can be seen from Figure 4.12,
which shows the observed transverse energy of the jet as a function of the transverse
energy of the matched quark. There is a significant fraction of jets that have additional
energy, which can be attributed to gluon radiation off other partons in the event and
reconstruction effects like the splitting and merging of jets. We apply an additional
requirement of |ET (quark)−ET (jet)| = ∆(ET ) < 16 GeV to remove badly matched jets.
This requirement is illustrated by the dashed lines in Figure 4.12. Figure 4.13 shows the
resulting MW distribution. Now the reconstructed W boson mass is near the input value,
MW = 80.2± 0.13 GeV/c2.

The bias in the reconstructed W boson mass is thus created by effects which are also
expected to occur in data. We take into account the shifted W boson mass in the tt cross
section measurement.
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Figure 4.12: The ET of the
matched jet as a function of the
quark ET . The dashed lines rep-
resent a ∆(ET ) = |jet ET −
quark ET | < 16 GeV require-
ment, the solid line indicates where
ET (jet) = ET (quark).

Top quark reconstruction

Once the jets of W boson and b quark are matched, we can extract the top mass. To
match we only require that the jet-parton distance dR < 0.3. Figure 4.14 shows the top
mass when all jets are matched to the correct partons

mt = 178.7± 0.3 GeV/c2. (4.9)

Again, there is a slight bias in the invariant top mass. The width and mean value come
from a fit of a Gaussian function to the distribution of correctly reconstructed events.
The width of the mass peak is completely dominated by smearing effects, and can be
interpreted as a resolution

σt = 23.4± 0.3 GeV/c2. (4.10)
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Figure 4.13: The invariant mass
(histogram) of the W boson after
a ∆(ET ) < 16 GeV requirement.
The curve represents a Gaussian
fit.

]2 [GeV/ctm
100 150 200 250

en
tr

ie
s

0

200

400

600

800

Reconstructed jets
Correct combination
b-jets swapped
W-jets swapped

 =     178.7topM
 =      23.4topσ

Figure 4.14: Reconstructed top
mass, where all partons have a
matched reconstructed jet within
dR < 0.3. Shown are the cor-
rect jet-assignments (histogram),
the solid curve represents a fit us-
ing a Gaussian function. Also
shown are the results if b jets
are swapped (dashed histogram) or
jets for W bosons are incorrectly
assigned (dotted histogram).

61



Event samples

The large value of σt suggests that it is not easy to measure the genuine top width in this
top production channel, as it is dominated by jet smearing.

We can also swap the jets of W bosons or b quarks that originate from different top
quarks. The results for these wrongly assigned jets are also shown. Finding the correct
jet combination for the two W bosons will be a great challenge.

4.5 Preselection of events

Before starting the actual analysis, the data and Monte Carlo event samples are filtered to
optimize signal purity. In this process, called preselection, events of a global type which
is similar to the expected signal are selected by making some cuts which maximize the
background rejection.

As the analysis presented here tries to identify tt→ all-jets events, our expected final
state consists of events with six or more jets and no isolated leptons.

Table 4.2 lists all the efficiencies for the different preselection cuts, which are presented
in the following paragraphs. The effect of the consecutive cuts on the data set is listed in
Table 4.3.

preselection cut cut efficiency total efficiency
isolated µ veto 1.0000± 0.0005 1.0000± 0.0005

isolated electron veto 1.0000± 0.0005 1.0000± 0.0005
Nvertex = 1 0.9645± 0.0065 0.9645± 0.0065
Njets ≥ 6 0.3405± 0.0045 0.3284± 0.0035

Table 4.2: Efficiencies of the different preselection cuts for tt all-jets Monte Carlo. Shown
are the efficiencies of the individual cuts, and overall efficiency after each cut. The uncer-
tainties are caused by the limited size of the Monte Carlo event sample.

preselection cut events rejected events left fraction rejected
4JT10/4JT12 trigger - 855k -

data quality 182k 671k 0.213
isolated µ veto 9 671k 0

isolated electron veto 70 671k 0
Nvertex 6= 0 5k 666k 0.007
Njets ≥ 6 383k 283k 0.575

Nvertex = 1 84k 199k 0.297

Table 4.3: Number of data events rejected in the preselection.
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4.5.1 Isolated lepton veto

The analysis discussed in this thesis studies events without isolated, high pT leptons. Not
accidentally, the veto on isolated leptons is exactly orthogonal to the selection done on
isolated leptons in DØ’s lepton+jets analyses [51]. Any event that passes these lepton
isolation requirements will be considered a tt→ lepton+jets candidate, and should hence
be removed from the dataset. Tables 4.2 shows that the lepton veto has no effect on signal
Monte Carlo.

4.5.2 Primary vertex veto

Events that do not have a correctly reconstructed vertex are rejected. This happens
rarely in our data sample. As already shown in Section 3.6.1, the efficiency to reconstruct
a primary vertex in data is 100% in the central detector region. This can also be seen in
Table 4.3: practically no events are rejected.

Multiple interactions

At the Tevatron, it is not unlikely that there is more than one pp interaction per beam-
crossing. Of events with six or more jets, around 13% of the events1 is expected to
come from multiple interaction events, where the second interaction is also a hard QCD
process [22]. As the whole interaction region spans an area of |z| < 50 cm, these double-
vertex events can be removed by looking at the location of the second primary vertex. We
reject events that have two well-defined primary vertices, with the following requirements:

• We demand that at least two tracks from a PV are inside the dR < 0.5 jet cone for
the jet to be assigned to that particular PV;

• If two unique, well defined PVs are found, which are more than 3 cm apart and
both have at least three jets assigned, the event is rejected.

Figure 4.15 shows the distribution of the primary vertices in z. The right plot in Fig-
ure 4.15 shows the difference in z, δz, if additional primary vertices are found (markers).
The dashed histogram shows the expected distribution if the additional PV is randomly
drawn from the z distribution. The two distributions agree within statistical uncertainties.

The effect of the PV selection criteria on Monte Carlo events is small, as can be
observed in Table 4.2. The veto on a second PV decreases the efficiency for tt all-jet
events by 4%. This requirement on QCD data reduces the event sample by 30%, as listed
in Table 4.3.

1In this case the second pp interaction is an actual, hard, QCD multijet process. The observed cross
section for these depends on the requirements on the energy of the jets. The contribution of this type of
background events is very dependent on the ET cut of the jet system. For a jet ET > 10 GeV, 20% of
the rate is expected to come from multiple interactions, at ET > 20 GeV this is already down to 2% [22].
The value of 13% was derived through intrapolation of the exponential behaviour of the multijet cross
sections in QCD (ALPGEN) Monte Carlo at

√
s =1.8 GeV. All these numbers come from Run 1 Monte

Carlo studies and have significant uncertainties.
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Figure 4.15: Left: The z distribution for all primary vertices with at least three associated
jets. Right: The difference in z between the first and second vertex (both are required
to have three associated jets). The markers show the distribution as observed in six-jet
data, the dashed histogram represents the expected distribution for random additional
interactions.

4.5.3 Jet multiplicity

Figure 4.16 shows the number of jets present in Monte Carlo tt all-jets events. As can
be observed, the majority of events does actually not have six separate reconstructed jets
within the detector acceptance. There is a requirement on the number of jets to be over
the six-jet threshold:

Njets ≥ 6, (4.11)

which is motivated by the following arguments:

• in QCD, the jet multiplicity falls off exponentially, so requiring many jets reduces
our background more than it reduces our signal;

• if less than six jets are required, it would be practically impossible to reconstruct
two top masses in the events.
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Chapter 5

Signal extraction

The analysis that is presented in the following chapters searches for tt events with six
or more jets. The data sample, after preselection, consists of almost 200k events, and is
dominated by QCD multijet background. The event selection is aimed at reducing this
background.

5.1 Analysis outline

An important characteristic of tt events is the presence of two b quarks in the final state.
Although b quarks are also produced directly in QCD, the bb̄+4 jets cross section is
expected to be about three orders of magnitude smaller than the qq̄+4 jets cross section.
In a small fraction of the qq̄+4 jet events (around 2%) a light quark jet (or jet originating
from a gluon) is wrongly identified as a b jet. By requiring the presence of a candidate
b jet (see next paragraph), the background is suppressed by two orders of magnitude,
while tt events are not rejected in the ideal case. The efficiency for signal depends on the
method of b jet identification, but is typically between 20-50%. The identification of b
candidates can thus be used to enhance the tt content in the sample.

In this thesis, the method to identify the b jet candidates is the detection of a secondary
vertex: b quarks hadronize to B mesons which have a relatively long lifetime, caused by
the fact that b quarks primarily decay through weak interactions. With a typical lifetime
of around 2·10−12 s, the B mesons are expected to travel distances of the order of 4 mm1.
The decay of the B meson leads to a displaced, or secondary vertex. The algorithm
used for secondary vertex reconstruction is called Secondary Vertex Tagger (SVT) and is
described in Section 3.6.2. An event that contains at least one b jet candidate is considered
‘tagged’. The b identification is discussed in Section 5.2.

The dataset is divided in two samples containing tagged and untagged events, re-
spectively. At this stage both tagged and untagged samples are dominated by QCD
background. Around 50-100 tt events are expected in the dataset of 16k tagged events.
Furthermore, no kinematic or topological differences are expected between tagged and
untagged background events. In the final analysis we measure the tt cross-section in the

1Typical γ factors are around 7
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tagged sample. As will be shown, even after additional selection requirements this sample
is still dominated by background. To predict the number of background events we use
the whole (tagged and untagged) data sample to parametrize the background content in
the tagged data. This analysis step will be explained in Section 5.2.2.

tt all−jets

6

4

2

1

3 5

1

2

3

4

5

6

y

x

QCD multijet

Figure 5.1: A graphical representation in the x, y plane of the detector for six-jet tt
all-jets events (left) and QCD multijet events (right). The length of the arrows represents
the energy of the jets.

After b tagging, it is possible to use the kinematic and topological difference between
QCD and tt events to further reduce the background. Figure 5.1 illustrates the difference
between a ‘typical’ tt all-jets event and a QCD multijet event. The QCD event is created
by a basic pp̄→ qq̄/gg+X process, where ‘soft’ extra jets are created through higher order
processes. The background QCD events come mainly from the production of light quarks.
Since relatively little energy is needed to produce light quarks and a large range in x of the
parton distribution function can be probed, the final quark system can have a significant
amount of (longitudinal) momentum along the beam axis. A significant fraction of the
QCD multijet events can hence be expected to have more jets at high values of |η|, or
whole events can be skewed towards the (anti)proton direction.

For tt production the boosting of events is much more unlikely, as there is barely
enough energy available for the tops to acquire substantial additional momentum. Con-
sequently, top quark pairs are produced nearly at rest and the jets in tt events are more
central. Also, the jets in tt events tend to have roughly the same transverse momentum,
no matter if the jet originated from a b quark or from the hadronic W decay.

The background for hadronic tt signal is further reduced by looking at a set of global
event quantities that are sensitive to the differences between multijet QCD and tt signal.
There are many observables that probe the difference between multijet QCD data and tt
events in global distributions, but no single observable has enough discriminating power.
In Section 5.3 a variety of these observables are discussed. It is possible to combine these
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quantities in one variable that discriminates between tt and QCD events. In this case,
an artificial neural network (ANN) is used, as is discussed in Section 5.4. Combining the
variables in an ANN has the advantage that the correlation between the quantities used
is taken into account, which leads to a more effective background rejection. As will be
shown, these techniques reduce the background to a level where the tt signal becomes
statistically significant.

5.2 Event tagging

The presence of two b quarks in tt decays leads to a relatively high yield of b candidate
jets. First, the effect of the secondary vertex tag requirement on tt signal events will be
discussed. Secondly, the behavior of the vertex tag on the background will be investigated.
The overwhelming presence of QCD events in the tagged (and untagged) sample allows for
a straightforward measurement of the probability that a secondary vertex is assigned to a
jet. As, even in the tagged sample, the top content is completely negligible with respect
to the background, there is no significant tt contribution to the tagging probabilities that
are thus derived.

The probability function that a jet contains any (fake or real) secondary vertex is called
a Tag Rate Function (TRF). The TRF is defined as the probability to tag a background
event in the (background-dominated) sample, where no distinction is made between tagged
jets originating from b, c, light quarks or gluons. The TRF is measured per jet on the
complete sample. The probability to find a secondary vertex associated with a jet in the
sample is then used to calculate the probability that an event contains one or more tagged
jets. These probabilities are derived using the technique described in Section 4.3.

5.2.1 Tagging tt events

Using the SVT tagging efficiencies per jet as measured in data (Section 3.6.3), the SVT-
tagging efficiency for tt all-jets events can be derived on an event-by-event basis, using
the method from Section 4.3. The average efficiency to tag a tt all-jets event with six or
more jets is determined to be:

εSV Ttt̄ = 0.564± 0.014, (5.1)

which also includes the accidental tagging of the jets from W boson decays. Combining
this with the preselection efficiencies of 33.0% (Table 4.2), trigger efficiency of 85% (Sec-
tion 4.3.1), the total sample is expected to contain around 90 signal events, in a sample
of 16k tagged events. The final event tagging efficiency is obtained after all selection
criteria, to account for the dependence on the event shape. The used method is discussed
in Section 6.1.

5.2.2 TRF measurement

An accurate prediction of the number of background events is necessary to observe a
relatively small excess of tt candidate events in the tagged sample. In this analysis, the
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Figure 5.2: Jet ET and η for jets
with an SVT tag.

tagging probability is measured on the same complete, tagged and untagged data sample.
The use of the same data sample is crucial to the analysis, as the value and shape of
the TRF depends on jet multiplicity, energy scale and flavor content of the sample. For
reasons we will explain in Section 5.2.3, we exclude double-tagged events with dRtags < 1.5
between the b candidate jets from the TRF measurement.

The TRF is modeled as function of the transverse energy and rapidity of the jets.
Figure 5.2 shows the jet ET versus jet η for the tagged sample. If we assume that there
are no η and ET correlations, the tag rate function pjet factorizes:

pjet(ET , η) = f(ET )g(η), (5.2)

with f(ET ) the probability that a jet with transverse energy ET has an SVT tag, g(η) the
probability that a jet at η is tagged. pjet corresponds to the absolute probability to tag a
jet. In Figures 5.3 and 5.4 the individual functions f(ET ) and g(η) have been normalized
to the same absolute probability as p(ET , η). Obviously, only jets that contain tracks can
be used to construct secondary vertices, so only taggable jets are taken into account. The
definition of jet taggability can be found in Section 3.2.2. The shape of the TRF function
depends on the energy scale of the event. To take this dependence into account, the TRF
is measured in four bins of HT .

Figure 5.3 shows the behavior of the jet TRF for different HT bins:

pjet(ET , η,HT ) =
Ntagged(ET , η,HT )

Ntaggable(ET , η,HT )
, (5.3)

as function of the jet ET , in four bins of HT . Shown are the observed TRFs as a function
of ET (markers), and the fitted distributions (line) with their uncertainties (dashed error
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band). The function f(ET ) (line) is fitted to these distributions, using a parametrization
of the form:

f(ET ) = a1 · 0.5(1 + Erf(
ET − a2

a3

√
ET

)),

where Erf is the standard Gaussian error function.
The function g(η) is obtained in a similar manner and is parametrized as:

g(η) = b1 + b2η
2 + b3η

4 + b4η
6 + b5η

8 exp(b6η
2). (5.4)

If g(η) returns a negative value it is fixed to zero. Figure 5.4 shows the observed TRF in
data as a function of η, and the fitted distribution of g(η) (solid line) with its uncertainty
band (dashed line). The tagged (and untagged) jet sample is observed to be independent
of φ.

The values of the parameters of f(ET ) and g(η) are listed in Table 5.1. As can be
observed from Figures 5.3 and 5.4 there are significant uncertainties on the shape and
size of the tagging probability per-jet; the dashed lines represent the uncertainty on the
shown TRF parametrization. The uncertainty on the TRF fit will be taken into account
in the systematic uncertainty of the background prediction.

parameter 0 < HT < 200 200 < HT < 300 300 < HT < 400 HT > 400
a1 [GeV−0.5] 0.0267 0.0284 0.0351 0.0356

a2 29.44 28.89 35.89 32.96
a3 [GeV] 5.92 5.98 8.51 5.98

b1 14.51·10−3 18.92·10−3 22.90·10−3 28.79·10−3

b2 -0.868·10−3 -1.037·10−3 1.56801·10−3 0.935167·10−3

b3 -0.424·10−3 -0.825·10−3 -2.124·10−3 -2.655·10−3

b4 32.36·10−6 83.57·10−6 71.32·10−6 250.25·10−6

b5 8.82 1.29 1.19 -59.46
b6 -10.55 -7.13 -7.81 -19.68

Table 5.1: The values of the fit parameters of the TRF η and ET parameterizations,
f(ET ) and g(η), for four different HT bins.

The jet TRF has been normalized to predict the total number of observed tagged jets.
The normalization is fixed by the requirement:

N jets
tagged =

∑

jets

pjet =
∑

jets

f(ET )g(η), (5.5)

which is determined for each HT bin separately, on the entire data sample. This normal-
ization also ensures that the absolute number of jets is predicted properly.

Figure 5.5 shows the TRF performance as a function of jet pseudo-rapidity and trans-
verse energy. The figure shows the number of observed and predicted b jet candidates.
Figure 5.5 also shows that the TRFs predict the shape of the tagged jet η and ET distri-
bution within reasonable limits.
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Figure 5.3: The tag rate function as a function of ET , for different HT bins as indicated.
The markers are the observed distributions in multijet data, the curves describe the TRF
fit of f(ET ) (solid line) and its uncertainty is indicated by the dashed curves.
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Figure 5.4: The tag rate function as a function of η, for different HT bins as indicated.
The markers are the observed distributions in multijet data, the curves describe the TRF
fit of g(η) (solid line) and its uncertainty is indicated by the dashed curves. Jets with
|η| > 2.5 do not pass the jet identification, and the points outside this range are only used
for fit purposes.
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Figure 5.5: Number of predicted and observed SVT tagged jets as a function of jet η and
jet ET . The histogram is the absolute number of predicted jets, the markers represent
the observed jets with a secondary vertex.

5.2.3 Jets from bb̄ events

As mentioned previously, there also is an overwhelming number of tagged background
events.

In events with two jets that contain secondary vertices2 it is possible to study the
angular correlation between the tagged jets. When an event contains two b jet candidates
we refer to it as a double-tagged event. Most double-tagged events are expected to
originate from QCD heavy quark production. If the two b candidate jets in the event
behave like created by an isotropic process, they are presumed to come from mis-tagged
light jets or other processes (like tt) where the b quarks are randomly distributed with
respect to each other.

To use the TRF method to predict the behavior of background in the tagged sample,
the jets with a secondary vertex tag in the sample need to be randomly distributed. To
calculate the probability that a background event is tagged, the probability for any jet to
be tagged is used. The assumption is that there is no correlation between the b candidates
in the event, so the probability is independent of the number of b candidates in the event.
This has as a consequence that, if there is a significant contribution of bb̄ content in the
sample, the TRF method is biased.

Figure 5.6 shows the distribution in dRtags =
√

(∆φ)2 + (∆η)2, the distance in η, φ
space between the two b candidate jets in double-tagged events. The markers represent
the double-tagged data events. The histogram (+error band) is obtained by applying
the TRF prediction to the individual jets in the events. There are about twice as many
double-tagged events observed between 0.5 < dRtags < 1.5 as can be expected from

2The number of events with three jets with secondary vertices is negligible. There are 53 of such
events in the sample, of which approximately 2 are expected to originate from tt production.
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Figure 5.6: dRtags between two
tagged jets, for both observed
double-tagged data events (mark-
ers) and absolute number of pre-
dicted events if the double-tagged
sample consisted of completely
random tags (histogram). The un-
certainty on the background pre-
diction is given by the error band.

random tags. On the other hand, the data above dRtags > 1.5 can be described, within
statistical limits, by random tags.

The excess of double-tagged events at low dRtags is consistent with the presence of
genuine b jets originating from gluon splitting g → bb̄. In this standard QCD process, a
hard gluon is produced, which subsequently decays to two b-quarks. The higher the gluon
momentum, the closer the b-jets will be.

tt MC ε(dRtags > 1.5)
ε(b) data 0.8017 ± 0.0047
2×SVT 0.8059 ± 0.0045
b-quark jet match 0.8003 ± 0.0067

Table 5.2: Exclusive efficiency of dRtags > 1.5 cut on tt all-jets Monte Carlo events, for
different methods of b-identification. The efficiencies are normalized to be 100% if all
double-tagged events are included. Errors are from MC statistics.

The hypothesis that the excess events at dRtags < 1.5 are actually coming from tt
is very unlikely. This is illustrated in Figure 5.7. The distance dRtags between two jets
in tt six-jet events tends to populate the larger values. In addition, only a few tens
of double-tagged events are expected. The shape of the distribution in Figure 5.7 is
almost completely determined by phase space and does not depend on the type of b
identification, where both realistic efficiencies as measured in data (line) and jet-b-quark
matching (dashed) were considered. To reduce the contribution from gluon splitting
background we chose to cut on dRtags > 1.5. Table 5.2 lists the efficiency of this cut,
measured on Monte Carlo events, using three different methods:
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tagged jets, for signal Monte Carlo.
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• folding in the b tagging efficiency as measured on data (most realistic);

• observation of secondary vertices in Monte Carlo jets;

• direct b jet-parton matching (least realistic).

However, these methods only measure the relative efficiency of the cut after already
requiring double-tagged events. The relevant efficiency for tt→ all-jets signal events with
at least one tag is measured to be

ε(dRtags > 1.5) = 0.985± 0.001. (5.6)

After application of the dRtags cut the b-jets in the remaining double-tagged background
events are expected to be uncorrelated, which allows the use of one TRF to predict the
number of tagged background events.
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5.3 Quantities used for event selection

This section discusses the various variables used in the kinematic tt→all-jets analysis.
Even in the b tagged dataset, the background dominates the tt signal by two orders
of magnitude. For all variables, the behavior of tagged background and expected tt
signal is presented. As will be shown, the TRF method predicts the tagged background
distributions reasonably well.

5.3.1 Definition of used variables

Variables used to distinguish hadronic top signal from QCD multijet background can be
separated into five categories:

(i) Event energy scale. QCD background tends to have an overall lower transverse
energy distribution, jets are less energetic and the total invariant mass of the event
is smaller than in tt̄ events;

(ii) Soft non-leading jets. As the QCD background mainly consists of hard 2-jet pro-
cesses with extra soft gluon jets, the additional jets are expected to be softer for
background than in tt signal. Even though the average jet energy is smaller in
multijet QCD events, the leading jets tend to be more energetic in QCD than in tt
events with comparable total transverse energy;

(iii) Event Shape. These quantities describe the event topology and the behavior of the
angles of jets in the event as a whole. Top events have a different shape compared to
QCD background. The jets are almost spherically distributed in top events, while
QCD events usually have a more back-to-back jet distribution;

(iv) Pseudo-rapidity distribution. These quantities are used to identify where the jets
in the event are observed in the detector. The typical hard scatter origin causes
the jets in QCD background events to be more back-to-back than top signal, while
QCD events are also more likely to be boosted in the direction of the beam-line.
Thus fewer jets in the event are expected to be central. As tt production at the
Tevatron is typically near the mass threshold, the tt system is expected to have a
relatively small boost in the beam direction. Top pair events are hence expected to
be more central;

(v) Top event properties. There are properties which are very typical for top event
structure, like the presence of W -bosons and b-quarks.

These properties will be discussed in detail in the following paragraphs, and are also
shown in Figures 5.8 through 5.22, where the observed tagged events and predicted dis-
tribution for tagged background are shown. The expected background in tagged events
is predicted with the use of TRFs. The distribution is created by applying event weights
(from the TRFs) to the complete (tagged and untagged) sample. For comparison, the
shape of the tt signal is also shown. To make the top content visible, the number of tt
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events is scaled to be equal to the number of tagged events in the figures. In practice,
this means that the tt signal distribution should be divided by approximately a factor 100
to get a reasonable prediction for the number of tt events expected in the sample. All
variables are shown both on a linear and logarithmic scale.

(i) Parameters Sensitive to Event Energy Scale

Parameters sensitive to the event energy scale are generally also sensitive to the top mass.
For all Monte Carlo simulations, the top mass of value mt = 175 GeV/c2 is used.
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Figure 5.8: HT distribution for tagged data (markers) and tt̄ →all-jets Monte Carlo
(histogram). Also shown is the (predicted) distribution for tagged background (band).

1. HT . This parameter is defined as the scalar sum of the transverse energy of the jets
in the event, and is also used for triggering. Only energy contained in jets is used for
the calculation of HT . HT is one of the quantities that is sensitive to changes in the
top mass, jet multiplicity and jet energy scale. The HT distribution for background
and signal (normalized to contain the same number of events) can be observed in
Figure 5.8.

2.
√
ŝ. The invariant mass of the jet system. Figure 5.9 presents the distribution

for tagged events, expected background and signal. The background is expected
to come from QCD processes, which prefer small values of

√
ŝ. The significant

difference between the two distributions is explained by the creation of two heavy
objects (the tt quarks) in signal events.

(ii)Parameters Sensitive to Additional Radiation

The QCD background consists of 2 → 2 parton processes with additional QCD radia-
tion. The following observables are mainly used because they provide good distinction
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Figure 5.9:
√
ŝ distribution for tagged data (markers) and tt̄ →all-jets Monte Carlo

(histogram). Also shown is the (predicted) distribution for tagged background (band).

between the hard 2 → 2 scatter with extra jets and events where all jets originate from
tt production.
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Figure 5.10: H3j
T distribution for tagged data (markers) and tt̄ →all-jets Monte Carlo

(histogram). Also shown is the (predicted) distribution for tagged background (band).

3. H3j
T . This variable is defined as

H3j
T = HT − ET (jet 1)− ET (jet 2), (5.7)
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Signal extraction

where jet 1 and jet 2 are the leading and second-leading jet, respectively. By sub-
tracting the energies of the leading jets, the remaining transverse energy sum be-
comes more sensitive to the difference between gluon radiation and the jets from W
and b decay. Figure 5.10 shows the distributions for background data and tt Monte
Carlo simulated events, where the latter are expected to have a significantly higher
H3j
T spectrum.
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Figure 5.11: NA
jets distribution for tagged data (markers) and tt̄ →all-jets Monte Carlo

(histogram). Also shown is the (predicted) distribution for tagged background (band).

4. NA
jets is the jet ET weighted average over the number of jets, which is defined as

NA
jets =

∫ 55

15
dEthr

T Ethr
T N(Ethr

T )
∫ 55

15
dEthr

T Ethr
T

, (5.8)

where N(Ethr
T ) is the number of jets in a given event with |η| < 2.5 and ET greater

than the threshold value Ethr
T . An average jet count parameter like NA

jets provides a
way to parametrize the number of jets in the event, while taking into account the
hardness of these jets. In particular, this variable is more sensitive to the number
of jets with energies expected for tt production than just a simple count of the jets.
For the expected 2→ 2 scattering process of the background, NA

jets is expected to be
close to 2, as can be observed in Figure 5.11. The choice of integration boundaries
for Ethr

T (15 and 55 GeV) is motivated by the difference in jet spectra for tt and
QCD events in this region [61].

5. ET5,6 is defined as the geometric mean of the transverse energies of the fifth and
sixth leading jet:

ET5,6 =
√
ET (jet 5) · ET (jet 6) (5.9)
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Figure 5.12: ET5,6 =
√
ET (jet 5) · ET (jet 6) distribution for tagged data (markers) and

tt̄ →all-jets Monte Carlo (histogram). Also shown is the (predicted) distribution for
tagged background (band).

This observable is effectively rejecting events of which the fifth and sixth jet are
much less energetic than expected in tt signal events. Figure 5.12 shows that the
distribution of ET5,6 is indeed much softer for background than for tt Monte Carlo
events.
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(iii)Event shape

The shape of the event can be quantified in terms of the normalized momentum tensor
Mab:

Mab =

∑Njets
j=1 pjapjb∑Njets
j=1 p2

j

(5.10)

where a and b are the spatial coordinates x, y, z of the jet momentum-vectors p and j runs
over the number of jets in the event. Mab is, by definition, a symmetric 3×3 matrix, whose
eigenvalues Q1, Q2 and Q3 can be used to quantify the momentum flow of the jets in the
event. Because of the normalization and the requirement that there are positive-definite
solutions of the eigenvalues, the sum of the eigenvalues is equal to unity: Q1+Q2+Q3 = 1.
The eigenvalues are arranged such that 0 ≤ Q1 ≤ Q2 ≤ Q3.

The size of any Qi represents the momentum flow in the direction of the ith eigenvec-
tor. This way, the leading eigenvector, with size Q3, points to the direction at which most
jet energy points. The other two eigenvectors (with sizes Q1 and Q2) span an orthogonal
coordinate system with respect to this maximal momentum flow. Aplanarity and spheric-
ity are defined as different combinations of the eigenvalues of the normalized momentum
tensor, where the aplanarity is

A =
3

2
Q1, (5.11)

and the sphericity is defined as

S =
3

2
(Q1 +Q2). (5.12)

As A and S are calculated from the jet three-momenta, they are sensitive to the Lorentz
frame that they are calculated in. Here, the laboratory (pp) frame is used. The physical
interpretations of the two variables are:

6. Aplanarity, A, defines how the collection of jets in the event is placed with respect
to a plane. If the event system spans only one plane, the Aplanarity is zero. An
event is maximally aplanar when A = 0.5. Figure 5.13 shows that tt Monte Carlo
events tend to be more aplanar than background events.

7. Sphericity, S, defines how spherically the jets are situated in the event. A perfectly
spherical event has S = 1. Top events are expected to be more spherical than
QCD background events, as can be seen in Fig 5.14.

(iv) Pseudo-rapidity sensitive parameters

Top events are expected to have pseudo-rapidity distributions different from the QCD
background. The following variables provide a handle on this characteristic:

8. Centrality, C, is defined as

C =
HT

H
, (5.13)
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Figure 5.13: Aplanarity distribution for tagged data (markers) and tt̄ →all-jets Monte
Carlo (histogram). Also shown is the (predicted) distribution for tagged background
(band).
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Figure 5.14: Sphericity distribution for tagged data (markers) and tt̄ →all-jets Monte
Carlo (histogram). Also shown is the (predicted) distribution for tagged background
(band).
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Figure 5.15: Centrality distribution for tagged data (markers) and tt̄ →all-jets Monte
Carlo (histogram). Also shown is the (predicted) distribution for tagged background
(band).

where H =
∑Njet

i=1 Ei is the sum of all the jet energies in the event, similar to HT

but including the longitudinal energy. The centrality measures which fraction of
the energy deposited in the proton-antiproton collision is transverse energy. By
construction, C is to first order not dependent on the energy scale. Figure 5.15
shows the centrality distributions for data and tt Monte Carlo events. The signal
tends to have higher values of C.

9. 〈η2〉 is the weighted root-mean-square (RMS) of the η of the six leading jets in the
event, and is defined as

〈η2〉 =

∑6
jet=1W(ET )(ηjet − η̄)2

∑6
jet=1W(ET )

. (5.14)

The jet weight W(ET ) and average value, η̄, are defined as

W(ET ) =
σtt̄(ET )− σbg(ET )

σtt̄(ET )
(5.15)

and

η̄ =
1

HT

Njets∑

j=1

ETjηj . (5.16)

The quantities σtt̄(ET ) and σbg(ET ) are the expected RMS of the jet η distribution,
as a function of the jet ET . Figure 5.17 shows the observed distributions of σtt̄(ET )
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Figure 5.16: 〈η2〉 distribution for tagged data (markers) and tt̄ →all-jets Monte Carlo
(histogram). Also shown is the (predicted) distribution for tagged background (band).
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and σbg(ET ) with respect to the center of the detector (η = 0), as a function of jet
ET . We use functions of type

σ(ET ) = c0 + c1 · exp(c2ET ) (5.17)

to parametrize σtt̄(ET ) and σbg(ET ).

As can be observed in Figure 5.17, the QCD multijet background falls slower than the
tt signal distribution. The η distribution of a typical tt event is expected to be normally
distributed around the center of the detector. As tt events are expected to be produced
almost at rest, the number of jets above and below η = 0 is expected to be equal. Hence,
〈η2〉 is expected to be smaller for signal with respect to background, as can also be
observed in Figure 5.16.

(v) Top event properties

jet 5jet 2 jet 3 jet 4 jet 6jet 1

jet weight / sum of all jet weights (0 −1)

random selection (0−1)

Figure 5.18: Random selection of candidate b jets. All jets in the event have a certain
probability to be tagged, represented by the size of the corresponding field shown above.
A random number between 0 and 1 labels a b jet candidate.

This class of variables contains quantities which are specific to the presence of high-
mass particles that decay to three jets, of which one is expected to be a b jet candidate.

10. Eb
T , the ET of the jet that is the most likely b candidate. The jets coming from b

decay of top quarks are typically more energetic than the b jets coming from QCD
b production. In untagged events used for the background prediction this quantity
is not à priori available. Hence, the TRF is used for the untagged data prediction.
In Monte Carlo events, the efficiencies for b, c and light jets are taken into account.
To select the b jet candidate in untagged events, we adopted the following method:

– if the event contains no tagged jets, a b candidate is selected by a random
draw. Each jet in the event is given a probability proportional to the tagging
probability of the jet. The probabilities are normalized by dividing each jet
probability by the sum of the jet probabilities. A random number between 0
and 1 selects the b candidate jet. Figure 5.18 gives a graphical representation
of this method;

– if a data event contains one tagged jet, that jet is used as the b candidate;
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Figure 5.19: Distribution of Eb
T , the b jet candidate for tagged data (markers) and tt̄→all-

jets Monte Carlo (histogram). Also shown is the (predicted) distribution for tagged
background (band).

– if the event has several tagged jets, the random draw method is used again,
but now only for the tagged jets.

Figure 5.19 shows the Eb
T distribution for tagged data and the expected Monte

Carlo. The Eb
T in tt events tends to be larger than for background.

11, 12. The top mass likelihood of the event, Mtt̄, is a χ2 variable defined as:

Mtt̄ =
(mt1 −mt2)2

σ2
t

, (5.18)

where mt1 and mt2 are the invariant masses of the two (three-jet) top candidates,
and σt is the width of the top mass peak as measured on tt Monte Carlo events. All
possible permutations of the six leading jets in the event are used. The combination
that gives the smallest value of Mtt̄ is used. A jet that is a b candidate cannot be
used in the reconstructed W . The b candidate is selected with the method described
in the definition of Eb

T (variable 10).

A similar variable can also be constructed for the W boson mass. The W mass
likelihood MWW is defined as

MWW =
(MW1 −MW )2

σ2
W

+
(MW2 −MW )2

σ2
W

, (5.19)

where MW and σW are the expected central value and standard deviation of the W
boson mass peak, obtained from tt all-jets Monte Carlo distributions as shown in
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Figure 5.20: Distribution of the mass likelihood variablesMtt̄ (top) andMWW (bottom)
for tagged data (markers) and tt̄ →all-jets Monte Carlo (histogram). Also shown is the
(predicted) distribution for tagged background (band).
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Figure 4.11 and 4.14, with values σt = 22 GeV/c2, σW = 13 GeV/c2 and MW =
83 GeV/c2. These are similar to the values used in the Run 1 analysis. MW1 and
MW2 are the invariant masses of the two candidate W bosons. For both Mtt̄ and
MWW , the jet permutation with the smallest value are used, after consideration of
all different jet permutations. This means it is likely that different jet permutations
are used for MWW and Mtt̄.

Figure 5.20 shows the distribution of Mtt̄ and MWW , which differ by about one
order of magnitude: it is more difficult to reconstruct two W bosons than it is to
find two three-jet objects with a similar mass. Moreover, the difference of Mtt̄ for
signal and background is only marginal, while MWW exhibits obvious differences.
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Figure 5.21: Distribution of the mass likelihood variable M for tagged data (markers)
and tt̄→all-jets Monte Carlo (histogram). Also shown is the (predicted) distribution for
tagged background (band).

13. It is also possible to combine MWW and Mtt̄ in one variable, M

M =
(MW1 −MW )2

σ2
W

+
(MW2 −MW )2

σ2
W

+
(mt1 −mt2)2

σ2
t

, (5.20)

which is the minimized mass likelihood variable used in the Run 1 analysis [61].
Here, obviously there is no ambiguity to what jet combinations are used for the W
and t reconstruction: the smallest χ2 of M is used. The distribution for M can
be seen in Figure 5.21. The background has a relatively large tail towards higher
values ofM. The initial Run 2 analysis used the two separate variables [71], but in
this thesis we do an optimization on all topological variables, so both the combined
and separate configuration will be considered.
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Figure 5.22: Distribution of the two minimal di-jet mass variables M 1,2
min and M3,4

min for
tagged data (markers) and tt̄ →all-jets Monte Carlo (histogram). Also shown is the
(predicted) distribution for tagged background (band).
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5.4 Neural networks

14, 15. The smallest di-jet masses in the event. As all jets in tt events are associated with
high-mass objects, both the smallest di-jet mass M 1,2

min and the second smallest di-
jet mass M 3,4

min can be useful variables to distinguish tt events from QCD events.
M1,2

min and M3,4
min are expected to be a smaller for QCD than for top events. When

calculating M 3,4
min, jets that were already used for M 1,2

min are ignored. There is no veto
on the use of b candidate jets, they are included in the permutations. Figure 5.22
shows the distributions of M 1,2

min and M3,4
min. Both variables peak at lower values and

more sharply for background than for tt events.

5.3.2 Correlations between the topological variables

The variety of quantities as described in Section 5.3.1 are correlated. To quantify the
correlation between two variables xi and yi, the (linear) correlation is calculated, which
is defined as:

r =
x̄y − x̄ȳ
σxσy

=
( 1
N

∑N
i xiyi)− ( 1

N

∑N
i xi)(

1
N

∑N
i yi)√

( 1
N

∑N
i x

2
i )− ( 1

N

∑N
i xi)

2 ·
√

( 1
N

∑N
i y

2
i )− ( 1

N

∑N
i yi)

2

, (5.21)

where the summation over i runs over all N events. The results of this correlation study
are listed in Table 5.3 for data, and Table 5.4 for Monte Carlo tt events. The event
samples used were tt all-jets Monte Carlo events with six or more jets, and data events
with six or more jets. There were no requirements on events being b tagged.

Variables with r values under 0.1 are considered to be mildly correlated. Variables with
r values over 0.2 are considered correlated, while strong correlations are expected to have
r > 0.4. Looking at the tables, it can be noted that most variables are strongly correlated
with HT , the most sensitive variable in the analysis. Variables from the same category
tend to be more correlated. The correlations are expected to be different for background
and tt signal. The variables which show a large difference in correlation are expected
to be most efficient at discriminating between background and signal. We combine the
quantities in an artificial neutral network , which takes these correlations into account.

5.4 Neural networks

Artificial neural networks (ANNs), like other complex multivariate techniques, provide the
best possible discriminating power by accounting for the correlations between the various
input variables. We use feed-forward ANNs, trained by back propagation as implemented
in the JETNET [63] program. All the ANNs used have one output node and one middle
layer with twice the number of nodes as the input layer (Figure 5.23). Based on the value
of the input nodes, the hidden nodes decide whether or not to ‘fire’. The decision to fire
is made through the evaluation of a function, in the case of JETNET

N(x) =
1

1 + e−2x
, (5.22)

where x is the weighted sum of the input node values. There are several functions of this
type that can be used in ANNs, but the critical requirement is that the function has a
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√
ŝ H3j

T NA
jetsET5,6

A S C 〈η2〉 EbT Mtt̄ MWW M Mmin
12 Mmin

34

HT 0.76 0.64 0.67 0.36 -0.28 -0.25 -0.02 0.20 0.43 0.27 0.20 0.36 0.25 0.34√
ŝ 1 0.60 0.63 0.36 -0.45 -0.52 -0.53 0.74 0.31 0.30 0.28 0.46 0.30 0.40

H3j
T 1 0.84 0.73 -0.02 -0.20 -0.16 0.18 0.12 0.13 0.10 0.19 0.32 0.34

NA
jets 1 0.60 -0.16 -0.29 -0.19 0.22 0.20 0.14 0.12 0.22 0.41 0.48

ET5,6
1 0.02 -0.12 -0.13 0.13 0.01 0.07 0.06 0.11 0.39 0.38

A 1 0.59 0.43 -0.45 -0.17 -0.13 -0.15 -0.22 -0.05 -0.08
S 1 0.57 -0.49 -0.10 -0.09 -0.18 -0.23 -0.10 -0.13
C 1 -0.76 0.01 -0.10 -0.13 -0.20 -0.16 -0.21
〈η2〉 1 0.11 0.22 0.18 0.32 0.20 0.29
EbT 1 0.06 0.09 0.09 0.09 0.14
Mtt̄ 1 0.08 0.62 0.04 0.06
MWW 1 0.61 0.05 0.06
M 1 0.08 0.11
Mmin

12 1 0.70

Table 5.3: Average correlations among the variables, for data events, which are domi-
nated by QCD background.

√
ŝ H3j

T NA
jetsET5,6

A S C 〈η2〉 EbT Mtt̄ MWW M Mmin
12 Mmin

34

HT 0.80 0.73 0.63 0.43 -0.15 -0.20 0.33 -0.17 0.44 0.24 0.12 0.28 0.33 0.38√
ŝ 1 0.64 0.54 0.39 -0.31 -0.41 -0.15 0.40 0.33 0.31 0.19 0.40 0.33 0.39

H3j
T 1 0.88 0.73 0.12 0.02 0.17 -0.16 0.20 0.17 0.06 0.19 0.38 0.40

NA
jets 1 0.78 0.15 0.05 0.17 -0.17 0.17 0.12 0.03 0.12 0.48 0.50

ET5,6
1 0.14 0.04 0.08 -0.09 0.06 0.09 0.01 0.10 0.48 0.46

A 1 0.69 0.29 -0.34 -0.11 -0.08 -0.09 -0.15 0.05 0.04
S 1 0.36 -0.37 -0.09 -0.07 -0.11 -0.15 -0.01 -0.03
C 1 -0.69 0.17 -0.06 -0.05 -0.09 0.02 0.01
〈η2〉 1 -0.08 0.17 0.08 0.20 0.06 0.10

EbT 1 0.02 0.06 0.04 0.11 0.14
Mtt̄ 1 0.08 0.66 0.05 0.07
MWW 1 0.53 -0.00 -0.01
M 1 0.03 0.04
Mmin

12 1 0.79

Table 5.4: Average correlations among the variables, for signal Monte Carlo events.
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Output layer

Input layer

Hidden layer

D

V 1 V 2 V 3

N(w,v)i i N(w,v)i i N(w,v)i i N(w,v)i i N(w,v)i i N(w,v)i i

Figure 5.23: A schematic view of a simple, three-layer neural network.

sharp ‘turn-on’, to simulate neuron-like firing behavior. The outputs of the hidden nodes
are collected, and passed on to the output node, which returns a number that can be used
to distinguish between different sets of input variables.

5.4.1 Neural network training

Neural networks contain weights for the different input variables and nodes. The deter-
mination of these weights is known as training. A good description of ANNs and the
training process in JETNET can be found in [63, 64].

During training, the neural net is tested on samples for which the desired output is
known. In this thesis we use the definition that for signal the ANN should return ‘1’, while
for background the output should be ‘0’. In the training process, the weights between the
nodes are adjusted in order to obtain the (known) output result. In principle this is just a
fit of a high-dimensional discriminant D, that is a function of the node weights and inputs.
Because of the many necessary iterations, JETNET uses a minimization algorithm that
searches for the minimum of D by taking the gradient and searching for a gradient value
close to zero. Once all weights are set, D is re-calculated. This fit continues until the
gradient of D is close to zero. Each step where all weights are determined for D is called
an epoch. Once the training is completed, the output discriminant D can be used to
quantify the similarity to the training sample for a set of input variables.

Over-training

When ANNs are used, one of the common buzzwords is over-training. Over-training an
ANN has to do with the node weights not being set properly, which results in the neural
network discriminant having an unintended bias toward a certain input variable. The bias
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typically consists of effects where the neural network becomes sensitive to very specific
information in the training sample, which not necessarily exist in the data set the neural
network is applied to. Three possible ways to over-train an ANN are listed below [64]:

1. Too many input parameters: if too many input parameters are used, any combina-
tion of the event weights will be able to generate a minimum that is sufficient for
the minimization. One can think of this as the errors being so large that any value
of the node weights will be considered to be ‘within specifications’.

2. Too many epochs: if a neural network is trained over too many training cycles, it
becomes sensitive to the statistical fluctuations in the training samples. Or simply:
the neural network gets to know the training sample too well.

3. Samples too small: as the training is done on samples, it is very important that the
samples are large enough. Usually, the rule of thumb is that the number of training
events is much larger than the number of parameters. If the sample is too small,
there is again the risk that the discriminant is trained to identify the statistical
fluctuations in the training sample.

These three ways to over-train can be used as guidelines on how not to over-train: use as
few input variables as possible, limit the number of epochs and use large training samples.

For the neural networks used in this thesis, the input variables were chosen from the
15 variables discussed previously. Only a subset of those 15 is used in the final analysis.
The selection of the final set of variables is done by optimization of the expected analysis
sensitivity.

The training samples

The neural networks are trained on a small, randomly chosen fraction of the main samples,
consisting of 2500 events for both signal or background. The training sample is equivalent
to around 2% of the data sample or 15% of the tt all-jets Monte Carlo sample with six or
more jets. Data events that contain a b jet candidate are never used for ANN training.

5.4.2 Two different neural networks, two different goals

In the analysis presented in this thesis, two different neural networks are used, which are
labeled NN0 and NNall. The first ANN, NN0, is used for the preselection. The aim is to
reject obvious background without rejecting signal. NN0 is identical to the ANN used in
the Run 1 tt to all-jets cross section analysis [61] and is not optimized for anything but
background rejection. As there is only a very mild cut made on the output discriminant of
NN0, no influence on the number of observed tt signal events is expected. See Section 7.1
for the stability of the expected cross section as a function of the NN0 selection cut.

The second neural network, NNall, is used to isolate the signal. NNall is tuned ex-
tensively and many different configurations are considered. The final configuration is
determined by optimization of the expected statistical uncertainty on the cross section
measurement (Section 6.2.1), a method also described in [62]. This method consists of
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5.5 NN0

rejecting input variables until a figure of merit (in this case the statistical uncertainty on
the cross section analysis) starts deteriorating rapidly.

5.5 NN0
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Figure 5.24: The output distribution of NN0 for tagged data (markers) and background
prediction (band). Also shown is the distribution shape for tt all-jets Monte Carlo events
(histogram).

The signal sample to train NN0 consists of 2.5k randomly picked tt all-jet Monte
Carlo events. Untagged data is used to provide a background sample, which also consists
of 2.5k events. The number of epochs is set to 50. NN0 is trained on the identical set of
variables that were used in DØ’s Run 1 tt all-jets cross section measurement [61], which
were selected to get maximal background rejection without affecting the tt signal: HT ,√
ŝ, H3j

T , NA
jets, S, A and C. The output distribution of NN0 is shown in Figure 5.24.

As can be observed from the markers and error band, the TRF prediction of the tagged
sample also works after application of NN0. A requirement of

NN0 > 0.05 (5.23)

is made on the NN0 discriminant. This cut has only a marginal effect on tt signal, but
reduces the background by more than a factor two, as is listed in Table 5.5.

5.5.1 The TRF prediction versus NN0

In this section the behavior of the TRF-predicted background is studied as a function of
the NN0 discriminant. To get a reliable background prediction it is important that there
is no significant topological dependence of the TRF prediction on the neural network
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tagged data all data MC (tt) efficiency
NN0 > 0.05 45.62± 0.54 % 40.24± 0.14 % 99.68± 1.13 %

Table 5.5: Efficiency of the NN0 > 0.05 requirement for the entire data sample, the
tagged data sample, and for tt signal Monte Carlo events.
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discriminants. At the same time, this method is used to provide an absolute prediction
of the number of background events in the tagged data sample.

Figure 5.25 shows the number of observed tagged events divided by the number of
background tagged events as predicted by the TRF, as a function of the NN0 discriminant.
In the ideal case, the ratio of these should be ‘1’ in each bin. However, we observe that
the absolute normalization of the TRFs on event-by-event basis is slightly too large: We
predict more events than we observe. The difference from unity is probably caused by
correlations between the first and second vertex tagged jet, caused by a remnant of bb̄
events in the sample. All these effects are small, so can easily be corrected for by scaling
the TRF prediction so it predicts the correct number of tagged events3.

For the region NN0 > 0.05, a value of SFTRF = 0.960 ± 0.012 is observed4. The
line shown in Figure 5.25 represents the fit of this normalization factor. Contamination
by tt events does not affect the value of SFTRF . The effect of the tt contribution was
determined to be of the order of 0.002. All TRF predicted background distributions in
this thesis are corrected with SFTRF . The background prediction in the figures of the
ANN input variables (Figure 5.8 through 5.22) also already include this correction, just
like Figure 5.24. The uncertainty on this normalization will be taken into account as a
systematic uncertainty on the cross section analysis.

The fact that the correction factor is small, leads us to believe that the factorization
of the η and ET dependence in the TRF is justified.

5.6 The final neural network and choice of input vari-

ables

The second ANN, NNall, is used to enrich the tt content in the data sample. The training
requirements for NNall are more stringent, as the obvious background has already been
removed from the training sample by NN0. Besides the veto on tagged events in the
training sample selection, the choice is made to bias the selection of data and Monte
Carlo events, based on how likely the event is to have a secondary vertex tag. The goal
of this procedure is to create training samples which are enriched with events with top
production characteristics. Particularly the background training sample should be as
similar to tagged data as possible, without actually containing any tagged events.

Events are assigned a weight between 0 and 1 which quantifies how likely the event
is to end up in the tagged sample. Events with large probabilities are more likely to be
used for the training of NNall. For data, this means that the weight for the (untagged)
sample is the event tag probability as derived from the TRF. For Monte Carlo events,
the weight includes the trigger efficiency and the SVT efficiency on the event level. If the
event weight is larger than a random number drawn from a uniform distribution between
0 and 1, the event is used for training.

3Note that the small number of correlated double-tagged events is the result of the dRtags > 1.5
requirement. Without this requirement the TRFs perform significantly worse [71].

4This value is compatible with the value obtained if SFTRF is measured without the NN0 > 0.05
requirement. As the NN0 cut is applied throughout the entire analysis, we also use it here.
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The event selection is repeated until samples of 5k Monte Carlo events and untagged
data events are collected, of which 2.5k are used for training. The other 2.5k events are
used for the optimization of the neural network output during the training process, which
reduces the risk of over-training NNall. It turns out that this selection method produces
ANNs that are around 4% more sensitive for the difference between tt and QCD events.
This is mainly caused by the suppression of data events that can be classified as obvious
background.

Choice the input variables for NNall

The best choice of input variables for NNall is determined by the rejection method: start-
ing from the 15 variables defined in Section 5.3, input variables are rejected until the
expected statistical significance of the NNall analysis increases drastically. The expected
significance, σfrac(stat), is derived with the use of tt Monte Carlo events and the back-
ground prediction from the TRFs, and is defined as:

σfrac(stat) =

√
sexp + bpred

sexp
, (5.24)

where sexp and bpred represent the number of expected signal and predicted background
events above a certain NNall threshold. The expected best achievable analysis sensitivity
for a certain ANN is equivalent to the minimum value of σfrac(stat), see also Section 6.2.1.

The minimal value of σfrac(stat) for different ANNs does not change much until only
six variables are left. A relatively small number of input variables allows us to bet-
ter understand and control systematic effects. Compared to the configuration with 15
variables [71] the observed increase, 4 % of the expected statistical error, is considered
acceptable. Removing one extra variable increases the fractional error by around 7 %.

After optimization, NNall uses the following input variables: HT , E5,6
T , A, 〈η2〉, M

and M3,4
min. Though there was no à priori requirement on this, now NNall includes at least

one input variable for every class of discriminating quantities as defined in Section 5.3.1.
Note that the transverse energy sum HT and the aplanarity A are used by both NN0 and
NNall.

Stability of NNall

After the choice of input variables for NNall, the behavior of the neural network discrim-
inant is studied for different training configurations. Again, the figure of merit used for
these sensitivity studies is the expected statistical significance of a cross section measure-
ment. The number of epochs for the training of NNall is 100, which is observed to be a
conservative value. When the expected statistical significance is studied as a function of
the number of internal nodes of NNall, the expected analysis sensitivity remains stable
when the number of internal nodes is varied between 2 and 20. This suggests that NNall

does not make much use of the inter-correlations between its input variables.
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5.6 The final neural network and choice of input variables

Options other than neural networks

The suspicion that NNall makes little use of the correlations between the input variables
is investigated through application of a more simple multivariate method. If the expected
sensitivity does not become worse, NNall can in principle be replaced by these more sim-
plistic methods. For instance, it is possible to construct a linear likelihood discriminant.
However, it should be noted that it would not be possible to easily select this particular
combination of input variables without the convenience of the NNall pruning and the
preselection with NN0.

A linear likelihood discriminant is defined as a function of a set of variables ~v and their
probability density functions (PDF) for signal S(~v) and background B(~v) (See also [16,
54]). Here, the variables ~v are the same variables as used for NNall. A simple likelihood
discriminant is defined as

D(~v) =
S(~v)

S(~v) +B(~v)
, (5.25)

where D(~v) is expected to be close to zero for background and close to unity for signal
events. The PDFs used for S(~v) and B(~v) are one-dimensional, so no correlations between
the input variables are taken into account.

A cross section measurement that uses a likelihood discriminant of type D(~v) is ex-
pected to have a statistical significance that is 3% worse than using a neural network.
Even though the expected statistical error is thus only marginally worse, we decided to
continue with an analysis with NNall.

5.6.1 The output of NNall
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Figure 5.26: The output distribution of NNall for tagged data (markers) and TRF pre-
dicted tagged background (band). Also shown is the expected distribution for tt all-jets
Monte Carlo events (histogram).
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The output discriminant of NNall is presented in Figure 5.26. Shown are the observed
tagged events, the prediction of the (tagged) background and the behavior for tt all-jets
Monte Carlo events. There is a small excess of around a 100 events in the higher NNall

values. The excess events are attributed to tt production.
In the next chapter we use NNall to determine the number of tt all-jets candidate

events in the total data sample.
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Chapter 6

Top pair cross section measurement

This Chapter discusses the pp→ tt cross section measurement in the all-jets channel, using
topological event information and the secondary vertex tag algorithm for b identification.
An artificial neural network, NNall, is used to discriminate between tt signal and tagged
QCD background. We will determine the optimal cut on NNall, which is used to count
the number of events above the cut threshold and compare this to the predicted number
of background events. The observed excess events are used to calculate the tt production
cross section.

6.1 Signal efficiency
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Figure 6.1: The trigger efficiency (left) and SVT tagging efficiency (right) as a function
of the NNall discriminant in the signal region. These efficiencies have been measured on
data. The Monte Carlo predictions are corrected for data efficiencies.

The efficiency to detect a tt all-jets event depends on the location of the jets in the DØ



Top pair cross section measurement

detector and on the transverse energy of the jets. As the jet ET and η are also used as input
for the various kinematic variables that are the input to NNall, we expect a dependence
of the efficiency to find a tt all-jets event as a function of the NNall discriminant.

Figure 6.1 shows the trigger efficiency and SVT tagging efficiency as a function of
NNall. As can be observed, particularly the trigger efficiency increases near the NNall

region where most of the signal is expected, which is above NNall > 0.8. We will account
for this dependence in the determination of the efficiency for tt signal.

6.2 Cross section using counting method

6.2.1 Optimization of the NNall discriminant cut
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Figure 6.2: Expected NNall output
distribution for background (line
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Figure 6.2 shows the predicted number of background events, together with the total
number of expected events, which include tt signal and background. The number of
signal events is obtained from Monte Carlo simulation, where a tt cross section of 6.5 pb
is presumed. The simulated signal distribution is corrected for the trigger- and SVT
tagging efficiencies. The optimal value of the cut on NNall is determined by minimizing
the expected statistical error on the measurement, σfrac(stat). See Equation 5.24 for the
definition of σfrac(stat).

As can be seen in Figure 6.3, σfrac(stat) is optimal at an NNall cut of 0.91, which is
used in the final analysis.
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tagged events
Ntag ≥ 1 15851

dR(tags) > 1.5 15238
NN0 > 0.05 7649
NNall > 0.91 357

Table 6.1: Numbers of tagged events after consecutive analysis cuts. The effect of the
preselection has already been listed in Table 4.3.

6.2.2 Observed events

In the tagged sample, the following number of events are observed above the NNall cut:

Nobs = 357 events. (6.1)

For completeness, we list the effect of all analysis cuts on the tagged sample in Table 6.1.

The tagged background is predicted to contribute:

N raw
bg = 315.9 ± 6.6 events, (6.2)

where the error comes from statistical fluctuations in the TRF input events.

The number of real background events is lower than the observed number. As the
predicted background distribution has to be corrected for tt tagged events that are used in
the background prediction, the corrected prediction will be lower than the TRF prediction.
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The correct number of background events if a cross section of σtt̄ = 6.5 pb is taken into
account is 1.9% smaller:

N corr
bg = 310.0 ± 6.6 events. (6.3)

The uncertainty on this correction due to the tt cross section will be taken into account
as a systematic uncertainty. The probability that the 357 observed events originate from
a statistical fluctuation of the predicted 310 background events is equivalent to 357−310√

310
=

2.67 standard deviations. This implies a Gaussian probability of P = 3.8 · 10−3 that the
observed excess of events is caused by a statistical fluctuation of the background.

Figure 6.4 shows the observed NNall distribution, together with the distribution pre-
dicted if background and tt all-jets signal (dashed histogram) or only background (solid
histogram) were present in the dataset. The binning has been chosen such that the last
three bins contain all events above the cut of NNall > 0.91.

The efficiency for the selected cut is measured on tt all-jets Monte Carlo events, which
is corrected for the efficiency of the trigger and the probability to have one SVT tag. The
efficiency for each individual cut (exclusive efficiency) and the total efficiency (inclusive
efficiency) are listed in Table 6.2:

εall−jets = 0.0806± 0.0010 (stat), (6.4)

where the errors are due to Monte Carlo statistics. This efficiency still has to be corrected
for events from the other tt decay channels, particularly the τ+jets channel is expected
to have an event topology that is similar to the fully hadronic top decays. From Monte
Carlo simulation we obtain:

ε`+jets = 0.0026± 0.0003 (stat). (6.5)
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ε for tt all-jets lepton+jets
inclusive exclusive inclusive exclusive

trigger 0.2537± 0.0022 0.7725± 0.0066 0.0169± 0.0008 0.5305± 0.0255
NSV T ≥ 1,dRtags > 1.5 0.1430± 0.0012 0.5635± 0.0045 0.0095± 0.0005 0.5628± 0.0275

NN0 > 0.05 0.1426± 0.0012 0.9971± 0.0007 0.0093± 0.0005 0.9831± 0.0095
NNall > 0.91 0.0806± 0.0010 0.5652± 0.0060 0.0026± 0.0003 0.2831± 0.0336

Table 6.2: Inclusive and exclusive efficiencies for tt all-jets signal. Shown are the efficien-
cies for both the all-jets and lepton+jets decay channel. The preselection efficiency has
already been listed in Table 4.2.

Note that the exclusive SVT tagging efficiency is very similar for both tt decay channels,
as the number of b jets is the same for both decay channels.

Combining the efficiencies for the different tt decay channels has to be done ac-
cording to the expected branching ratios. The branching ratios are respectively, BR=
0.4619 ± 0.0048 for the all-jets and BR= 0.4349 ± 0.0027 for all three lepton+jets chan-
nels combined, see Table 1.3. This gives us a final signal efficiency of

(ε · BR)tt̄ = (ε · BR)all−jets + (ε · BR)`+jets = 0.0384± 0.0012 (6.6)

6.2.3 Cross section calculation

The tt production cross section, measured in the all-jet channel, is calculated from

σtt̄ =
Nobs −Nbg

L · (BR · ε)tt̄
(6.7)

where the integrated luminosity was measured to be L = 162.5 ± 10.6 pb−1 (see also
Table 4.1).

The (Poisson) logarithmic likelihood −2 lnQ of the cross section probability Q can be
constructed using:

−2 lnQ = ln

(
NNobs
exp

Nobs!
e−Nexp

)
, (6.8)

which gives the likelihood to observe a certain number of events Nobs, as a function of the
number of expected events Nexp. Nexp is the number of events that are predicted for a
(running) hypothetic cross section value. Nexp is only dependent on the cross section if all
other observables in Equation 6.7 are known. The minimal value of the Poisson likelihood
is identical to σtt̄, and the standard deviation is given by the values where −2 lnQ is
exactly one higher than the minimal value. Figure 6.5 shows the distribution of −2 lnQ.

Using the observed events (6.1), the predicted background (6.3) and efficiency (6.6),
the cross section is measured to be:

σtt̄ = 7.5+3.1
−3.0(stat) pb (6.9)
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Figure 6.5: The Poisson likelihood
of the tt̄ cross section measure-
ment.

6.3 Event Display

We use the DØ viewing environment [69] to visualize tagged events at large NNall discrim-
inants. All events with large NNall values have only one, well defined primary vertex, but
the six-jet environment in combination with high track multiplicities make the candidate
events not very interesting for aesthetic purposes.

We selected an event with two secondary vertex tags, which increases the probability
that it is a top candidate. In addition, it is possible to identify all six jets and both
secondary vertices in the event display. Some additional information concerning this
event and its jets is listed in Table 6.3. The reconstructed invariant masses of the top
quarks and W bosons are the values coming from the jet permutation with the smallest
value of M (Equation 5.20).

Figure 6.6 shows the separate six jets in the event in the η, φ plane, where the energy
contained in the calorimeter is represented on the vertical axis. This type of representation
is very useful for studying the calorimeter information and jets in the event. A threshold
of ET > 1.0 GeV on the calorimeter towers was applied for noise reduction.

When the busy six-jet environment is projected to a two-dimensional plane, it is
usually difficult to identify the separate jets in the x, y plane, like is shown in Figure 6.7.
The jets tend to overlap when the event is projected on to the transverse plane, it is
only possible to identify 5 jets in this projection. Figure 6.8 is a detail of the central
detector region in Figure 6.7. The secondary vertices that have been reconstructed in the
track-jets are marked by an ellipse. The hits in the inner layer of the SMT are also shown
in Figure 6.8. These are located on a cylinder with a radius approximately 2.6 cm from
the interaction point.
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General information
event number 41213373

run number 176305
date Tuesday April 29, 2003

Topological variables and ANN
HT 457 GeV ET5,6 37.4 GeV
A 0.28 〈η2〉 0.31

M 1.29 M 3,4
min 71.3 GeV/c2

NN0 0.999 NNall 0.998
The jets

jet 4 ET = 61.9 GeV jet 1 ET = 114.2 GeV
η = −0.9 η = −0.1
φ = 236◦ φ = 240◦

jet 2 ET = 111.2 GeV jet 5 ET = 41.9 GeV
η = −0.5 η = −1.3
φ = 38◦ φ = 329◦

MW1 71.3 MW2 78.1
jet 6? ET = 33.4 GeV jet 3? ET = 94.8 GeV

η = 0.4 η = −0.4
φ = 75◦ φ = 126◦

mt1 175.4 mt2 188.1

Table 6.3: Additional information of the event shown in Figures 6.6 through 6.8. The jets
marked with ? have a secondary vertex assigned to them. The three jets within a column
correspond to the listed MWi

and mti in the same column. The W mass resolution
is approximately 15 GeV/c2, the resolution for the triple-jet invariant mass of the top
candidates is around 24 GeV/c2, see also Appendix A.
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Figure 6.6: Calorimetric transverse energy in the η, φ plane, of a six-jet, double-tagged
tt candidate event.
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Figure 6.7: The calorimeter and
tracking view. A double-tagged tt
candidate event shown in the plane
perpendicular to the beam. Shown
is a projection on the xy plane at
z = 0.

6.4 Systematic uncertainties

In this section the systematic uncertainties on the measured cross section will be described.
There are several uncertainties that affect the cross section extraction. Some influence
the signal efficiency, others the number of background events.
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1 cm

Figure 6.8: Detail of the double-
tagged tt candidate event. Shown
is a projection on the xy plane at
z = 0, focused on the interaction
region near the beam pipe. The
dots in the upper left corner rep-
resent hits in the inner layers of
the silicon tracker, approximately
2.6 cm from the interaction point.
The two secondary vertices are also
indicated.

Below, we list the uncertainties in decreasing order of importance based on the size of
their effect on the measured cross section:

• the uncertainty on the jet energy scale for calorimeter energy measurements both
in data and Monte Carlo events;

• the uncertainty coming from the (fixed) input top mass in the Monte Carlo simula-
tion;

• the uncertainty coming from the jet energy resolution and the jet identification;

• the uncertainty coming from the SVT tag efficiency parameterizations;

• the uncertainty coming from the trigger parameterizations;

• the uncertainty on the background prediction using the tag rate functions.

6.4.1 Jet Energy Scale

Any change in the behavior of the Jet Energy Scale influences the efficiency for signal
and background. The total uncertainty on the jet energy scale depends on the choice
of the parameterizations (systematic error) and the accuracy of the determination of the
parameters (statistical error). There are different JES corrections for data and Monte
Carlo events. The dominant systematic error comes from the showering correction S (See
Equation 3.5). The systematic and statistical errors are taken to be uncorrelated, and
the total error on the energy of a jet is defined as

σJES =
√
σ2
stat + σ2

syst. (6.10)
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σJES depends on the jet energy and ηdet. The typical value of the jet energy scale un-
certainty is σJES = 7%. The uncertainty on the JES for data and that for the Monte
Carlo are uncorrelated and should both be taken into account. The uncertainty in the
JES affects the efficiency for signal in two places:

1. the preselection efficiency is sensitive to the number of jets over an ET threshold;

2. the ANN analysis is sensitive to the variations in the (energy-sensitive) input vari-
ables, particularly HT , E5,6

T , M and M 3,4
min.

Table 6.4 lists the fractional changes of the measured efficiency for signal when the jet
energy scale is varied by ±σJES, and by the average value of the correction uncertainty,
that amounts to 7%. Shown are both the influence of the JES on the preselection efficiency
and on the total analysis efficiency for NNall > 0.91.

preselection NNall > 0.91
−σ +σ −σ +σ

data JES -10.8 10.7 -20.2 20.7
MC JES -10.8 10.7 -20.1 20.7

σJES ≡ 7% -7.5 7.00 -24.8 23.9

Table 6.4: Systematic uncertainties (in %) on the efficiency for signal as caused by the
uncertainty on the jet energy scale. Shown are the effect of the JES on the preselection
efficiency, and the effect of the JES on the efficiency after the NNall cut.

The uncertainties listed in Table 6.4 show that the JES influences the analysis uncer-
tainty in two ways: Low-energy jets have large uncertainties on the jet correction. These
jets are also most likely to be cut away in the preselection, and as such the JES correc-
tion of low-energy jets influences the preselection efficiency. At NNall values near unity,
all jets are relatively energetic. This is caused by the set of kinematic and topological
variables which are used to select tt-like events. The NNall cut efficiency is very sensitive
to fluctuation in the energies of the jets that are used for the calculation of the various
variables. Here, the small errors on jets with transverse energies around 50-100 GeV cre-
ate an uncertainty on the analysis efficiency which is even larger than the effect that is
caused by the preselection.

The result of this effect is presented in a graphical way in Figure 6.9, which shows the
efficiencies when the JES is varied by ±σ or, alternatively, by ±7%. Figure 6.9 shows the
behavior of the efficiency of the complete analysis under JES variations, as a function of
the NNall cut. The left plot shows the fractional change in analysis efficiency as a function
of the NNall cut. The right plot shows the efficiency of the NNall cut after preselection
and NN0 > 0.05 requirement, which hence is equal to unity if no NNall cut is applied.
Figure 6.9 only shows the uncertainty for a ±1σ variation of the Monte Carlo JES. Adding
the same curves for variation of the data JES would not add any information; as listed
in Table 6.4, the uncertainties introduced are almost identical. Although the absolute
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6.4 Systematic uncertainties

corrections for the data and Monte Carlo JES are different, the identical uncertainty
confirms that the JES in the simulation provides a realistic model of the data.

The total uncertainty is obtained by adding the data and Monte Carlo JES uncertainty
in quadrature:

σJES(tot) =
√
σMC
JES(tot)2 + σdataJES(tot)2. (6.11)

The values of σJES(tot) are +29.3% for changes towards larger efficiency values, and -
28.5% for the lower shift. The influence of the JES error on the total efficiency is a
significant fraction of the analysis uncertainty.
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Figure 6.9: The relative change in efficiency (left) and efficiency of the cut on NNall

(right) for changes in JES. Shown are the efficiencies for the JES varied by ±σ, which
are similar for the data and Monte Carlo jet energy scale. Also shown is the result of the
±7% JES variation.

6.4.2 Top mass

The extracted efficiency for signal is dependent on the top mass that was used in the
Monte Carlo simulation. Figure 6.10 shows the nominal signal efficiency for a top mass of
175 GeV/c2, together with the result obtained from control samples with top masses of
165 and 185 GeV/c2. We determine the efficiency for mt = 178.0±4.3 GeV/c2 (the current
preliminary world average, see [9, 13]) through interpolation, also shown in Figure 6.10.

As the value of mt used in the Monte Carlo is still within one standard deviation of
the world average, we decided not to correct to the current world average. Instead, the
variation of the efficiency as a function of the ±1σ uncertainty of the world average is
taken as the limit. These limits are also indicated in the Figure. The efficiency for tt
varies between −2.0% and +9.0%, which is taken into account as a systematic uncertainty
from the top mass.
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Figure 6.10: Top mass dependence
of the efficiency for signal, for the
vertex tag analysis. The dashed
lines are the current (preliminary)
limits on the top mass, mt =
178.0± 4.3 GeV/c2.

6.4.3 Jet identification

The current jet identification and reconstruction uses a first-level trigger confirmation in
its selection criteria, as discussed in Section 3.1.6. In the Monte Carlo simulation, this
effect is not taken into account and therefore the efficiency of the identification and recon-
struction is typically 1% higher than in data. We have made a conservative parametriza-
tion of this effect, and apply it in the Monte Carlo. This leads to a change of -5.2% in
efficiency for tt all-jets events, which we take into account as a systematic uncertainty.

6.4.4 Jet resolution

The Monte Carlo jets are smeared according to the measured jet energy resolution in data.
There is an uncertainty on this smearing correction, which is of the order of a few tenths
of a percent. This effect is taken into account by over- or under-smearing the simulated
jets. We observe an effect between −0.2% and 0.5% on the signal efficiency.

6.4.5 Tag rate functions and background

Uncertainty on TRF fit

The uncertainties on the TRF fits are shown in Figures 5.3 and 5.4, and include all
correlations between the fit parameters. We modify the TRF to the upper and lower
values. Determination of the number of background events with these modified turn-on
TRF parameterizations gives us a different number of expected background events. We
use the change as a systematic uncertainty on the TRF fit, which is listed in Table 6.5.
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6.4 Systematic uncertainties

NNall > 0.91 −σ +σ change in Nbg [events]
TRF fits -1.29 % 0.87 % -4.0 2.7
SFTRF -1.20 % 1.20 % -3.7 3.7

tt̄ content 0.88 % -0.88 % 2.8 -2.8

Table 6.5: Uncertainty on the number of predicted background events. Listed are the
uncertainties caused by the error on the TRF fit functions, the error on the TRF normal-
ization and the presence of tt events in the TRF prediction of the background.

The TRF scale factor

The tag rate functions are normalized to predict the exact number of tagged events in the
background region. There is an uncertainty on the fit of the normalization factor SFTRF ,
which is used as the systematic error on the background normalization. The effect on the
number of predicted background events is listed in Table 6.5.

The presence of tt in the background

The number of background events is corrected for the (expected) number of tt all-jets
events in the sample, where the theoretical value of σtt̄ = 6.5 pb is used. We estimate the
systematic error by varying the cross section by ±3 pb, which is the statistical error on
the measured cross section in this analysis. The effect is listed in Table 6.5.

6.4.6 The b-identification

The b jet identification efficiency in data and Monte Carlo simulation has sizable uncer-
tainties. The systematic error on the efficiency to tag b jets is around 3 %. The largest
contribution comes from the size of the muon tagged sample, which is used to measure
the efficiency on data. There also is a similar effect from Monte Carlo statistics, par-
ticularly in µ-tagged jets. Another effect that has an influence on the efficiency for tt
all-jets signal is the uncertainty on the taggability of jets. There are also marginal effects
coming from the difference in taggability as a function of (Monte Carlo) quark flavor and
the assumption that the secondary vertex tag behaves identical if a muonic jet is present
in the event. The changes in efficiency for signal are categorized in simulation and data
effects, and are listed in Table 6.6.

6.4.7 Other systematic uncertainties

Monte Carlo statistics

The uncertainty on the efficiency is limited by the number of Monte Carlo simulated tt
all-jets events. This introduces an additional systematic uncertainty of 1.2% on the cross
section measurement.
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NNall > 0.91 +σ −σ
Monte Carlo Statistics +1.2 % -1.2 %
Vertex reconstruction +1.0 % -1.0 %

Trigger Efficiency +3.0 % -0.0 %
Trigger fit +1.0 % -1.2 %

JES ±σJES +29.3 % -28.5 %
mt ± σt +9.0 % -2.0 %

jet identification +0.0 % -5.2 %
jet energy resolution +0.2 % -0.5 %
b tag efficiency (data) +3.0 % -3.8 %
b tag efficiency (MC) +0.6 % -0.9 %

total uncertainty on εtt̄ +31.0 % -29.4 %

Table 6.6: The changes in the efficiency (in %) for tt signal for different systematic
uncertainties that affect the efficiency measurement.

Primary vertex reconstruction

The preselection also includes a vertex multiplicity cut. The uncertainty on this selection
cut is ±1.0%, which is a combination of the uncertainty caused by the difference in
efficiency between data and Monte Carlo events, and Monte Carlo statistics [46].

Determination of the trigger efficiency

The method to determine the trigger efficiency neither accounts for the correlations be-
tween triggered jets, nor the possibility that a jet might trigger more than one L1 trigger
tower. The size of this effect is derived from the difference between the application of
the jet turn-on curves and the efficiency as measured on Monte Carlo tt events with a
simulated trigger (Section 4.3.2). The effect on this efficiency is +3 %.

Uncertainty of the trigger fits

The signal trigger inefficiency is almost completely dominated by the first trigger level,
the efficiency for tt signal at the first trigger level is not saturated like in L2 and L3. The
trigger efficiency was re-calculated by varying the trigger turn-on curves on all trigger
levels by ±1σ. The effect of the total trigger efficiency is 1%.

6.4.8 Total systematic uncertainty

The contributions from all effects to the systematic uncertainty of the signal efficiency
are listed in Table 6.6. The effect due to the JES appears to dominate the systematic
uncertainty. The different systematic effects on the signal efficiency are considered un-
correlated, and are added in quadrature to obtain the total systematic uncertainty. We
do the same to obtain the systematic uncertainty on the number of background events.
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+σ −σ change in cross section
total error on efficiency 31.0% −29.4% -1.8 pb +3.1 pb

total error on background 1.72% −1.97% -0.9 pb +1.0 pb

total systematic error -2.0 pb +3.3 pb
error on the luminosity +6.5% −6.5% -0.5 pb +0.5 pb

statistics -3.0 pb +3.1 pb

Table 6.7: Summary of the total systematic, statistical and luminosity uncertainties and
the result on the cross section measurement.

Table 6.7 lists the total systematic uncertainty on the efficiency and the number of back-
ground events. Also listed in Table 6.7 are the uncertainty on the luminosity and the
statistical error.

The total systematic uncertainty on the cross section is determined to be -2.0 pb for
contributions which lower the cross section. The cross section is raised by 3.3 pb for
contributions which increase the measured value. The uncertainty due to the error on the
luminosity can be considered small, while the statistical error is of comparable size to the
total systematic error.

6.5 The tt production cross section

The tt production cross section measured on events with a secondary vertex tag and six
or more jets is

σtt̄ = 7.5+3.1
−3.0(stat) +3.3

−2.0(syst) ± 0.5(lumi) pb. (6.12)

When all uncertainties are combined in quadrature, we obtain

σtt̄ = 7.5+4.5
−3.6 pb, (6.13)

slightly more than two standard deviations from 0. An excess of 47 events is observed
in a sample with an integrated luminosity of 162.5 pb−1. The probability that these 47
events originate from a statistical fluctuation of the background is P = 3.8 · 10−3. The
invariant mass of the tt candidates is examined in Appendix A.

6.6 Comparison

Figure 6.11 shows the preliminary measurements of the tt production cross section in a va-
riety of analyses, presented at high energy physics conferences in the spring of 2004 [70],
including a cross section result for the all-jets channel measured on the same dataset
but without optimizations in the background sample and neural network procedure [71].
Figure 6.11 also includes the result presented in this thesis. The uncertainty on the mea-
surement in this thesis is smaller than the previous DØ Run 2 cross section measurement
in the all-jets channel.
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Figure 6.11: The preliminary DØ results for the different tt cross section analyses [70].
The bands represent the theoretical predictions for the tt cross section, for mt = 174.3±
5.1 GeV/c2. Listed are the measured cross sections from the different analyses, with
their statistical and systematic uncertainty listed separately. Also shown is the integrated
luminosity on which each measurement is based.

The measurement presented in this thesis has comparable errors to the measurements
in the other decay channels. Most measurements are dominated by the statistical un-
certainty, unlike the measurement in this thesis which has a statistical and systematic
uncertainty of comparable size. Analyses which focus on tt decays with few jets are less
dependent of the uncertainty on the jet energy scale. Therefore, the different channels
with a lepton and jets in the final states are measured with relatively small systematic
errors.

The competing preliminary result of the tt cross section in the all-jets channel as
presented by the CDF collaboration [67] has a similar central value, and comparable
statistical and systematic uncertainties.
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6.6.1 Theoretical prediction
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Figure 6.12: The Run 1 and Run 2 DØ tt production cross section result for the mea-
surements in the all-jets channel. Both Run 2 cross section measurements were done on
data with a center of mass energy of 1.96 GeV, but for clarity the second point is shifted
toward higher values of

√
s.

Figure 6.12 shows the NNLO QCD predictions for the tt cross section, for a top mass
of mt = 174.3 ± 5.1 GeV/c2 [9, 70]. The result presented in this thesis and previous tt
cross section measurements in the all-jets channel are also shown in Figure 6.12. The
measurements agree well with the theoretical predictions.
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Chapter 7

Stability and consistency of the
result

In the previous Chapter we have measured the tt production cross section. In this Chapter
we will further examine the data used to determine the tt production cross section. The
stability of the result will be investigated by application of alternative analysis methods.

7.1 The neural network analysis

In the cross section estimate, the analysis efficiency and number of events are determined
for a fixed NNall cut. The NNall cut is optimized by tuning to the expected lowest
statistical error as described in Section 6.2.1. All systematic uncertainties are derived for
this particular NNall cut. The main other uncertainty of the neural network analysis is
the dependence on the NN0 background rejection cut.

The neural network NN0 is used for an intermediate selection, as discussed in Sec-
tion 5.5. Figure 7.1 shows the minimal fractional error σfrac of the analysis as a function
of the preselection cut on NN0. The cut of NN0 > 0.05 appears to lie ‘safely’ on the
plateau region. Consequently the fractional error does practically not depend on the value
of the NN0 cut.

7.2 Tighter jet criteria

Another quantity which affects the measurement is the minimal ET requirement, used in
the jet identification. The expected analysis efficiency and uncertainty depends on the jet
ET requirements near the used requirement of ET > 15 GeV. Näıvely one could expect
an improvement when the ET cut is tightened (See also Table 6.4). The current sample,
however, is too small to do this in an effective way: the (expected) statistical uncertainty
increases rapidly when the jet requirements are tightened.

Table 7.1 gives the (expected) statistical fractional error on the cross section as a
function of the jet ET requirement. The table also lists the relative systematical errors
coming from the jet energy scale uncertainty. As the lower-energy jets have larger JES
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Figure 7.1: The expected frac-
tional error of the cross section
measurement, as a function of the
cut on the discriminant of the pre-
selection neural network NN0.

ET cut [GeV] σfrac(stat,σtt̄ = 6.5pb) σfrac(JES)
15 0.476 +0.293 -0.285
20 0.502 +0.343 -0.308
25 0.547 +0.333 -0.308
30 0.645 +0.373 -0.301
35 0.780 +0.427 -0.346

Table 7.1: The expected fractional error on the cross section measurement, as a function
of the jet ET cut in the preselection. Also shown is the dependence of the JES systematic
errors as a function of the jet ET cut.

uncertainties, tightening the jet requirements could in principle reduce the systematic
uncertainty on the measured cross section. As can be seen in the table, the fractional
error due to the JES does not improve as a function of the jet ET cut. This is due to the
fact that, in the final sample, events which consist only of low energetic jets are already
rejected by the neural network analysis.

7.3 Linear likelihood discriminant

As discussed in Section 5.6, it is possible to construct a linear likelihood discriminant
D(~v) instead of a neural network. D(~v) is expected to be close to zero for background
and close to unity for signal. The likelihood method performs optimal when the input
PDFs are uncorrelated, so this analysis can be considered a cross-check on how the neural
network analysis uses the correlations in the six input variables. We use one-dimensional
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7.3 Linear likelihood discriminant

PDFs to construct D(~v), using the same quantities (HT , E5,6
T , A, 〈η2〉, M and M 3,4

min) as
for the neural network SVT analysis. The same preselection is used, but the NN0 cut
is tightened to NN0 > 0.1 to increase the sensitivity of this study. Figure 7.2 shows the
predicted distribution of D(~v) and the expected fractional error.
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Figure 7.2: Left: Distribution of top discriminant D(~v) for observed tagged data (markers)
and predicted tagged background(histogram). Right: Fractional error as a function of the
cut value for D(~v).

The predicted optimal fractional error of σfrac = 0.44 is obtained for D(~v) > 0.951,
comparable to the fractional error observed in the neural network analysis. Figure 7.3
shows the distribution for the higher values of D(~v).

Above the cut of D(~v) > 0.95, the following numbers are observed:

Nobs = 254 events, (7.1)

Nbg = 214.7± 5.5 events, (7.2)

which is already corrected for tt content, and a signal efficiency of

εall−jets = 0.0724, (7.3)

approximately 0.01 smaller than in the NNall analysis. The number of observed events
and the number of predicted background events is smaller than in the NNall analysis.
The figure of merit, the observed fractional error, is slightly larger; 0.40 for the neural
network analysis and 0.41 for the discriminant analysis. This results in the calculated
value for the tt cross section (Equation 6.7):

σtt̄ = 7.3+3.0
−2.9(stat) pb, (7.4)

1Note that the value of the minimal fractional error depends on the cross section used in the Monte
Carlo prediction. However, the cut value does not depend on the Monte Carlo cross section.
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Figure 7.3: Linear likelihood for
tagged data (markers), expected
background (line) and expected
signal+background (dashed line).

consistent with the neural network analysis, but with a somewhat smaller central value.
It should be noted that the construction of the linear likelihood discriminant relies

heavily on the knowledge gained from the NNall analysis. Thus, treating the likelihood
discriminant analysis as a completely independent method is unjustified: without the cut
on NN0 and knowledge of the optimally discriminating input variables of NNall, it is
practically impossible to construct a discriminating linear likelihood discriminant.

7.4 Cross section using neural network fits

It is also possible to use the shape of the background and signal distributions to determine
the relative tt content in the tagged sample. The data excess and signal efficiency can
then be determined by integrating over the NNall distribution. To fit the background
and signal contribution, a binned Poisson likelihood fit is used [68]. This method has the
additional advantage that it accounts for all statistical fluctuations of the tagged data
sample, Monte Carlo simulated signal and TRF predicted background (see also [61]).

Events with NNall < 0.1 are not considered in the fit. The fit determines the fraction
of signal, fs, and background, fb, in the tagged sample. Figure 7.4 shows the result
of the binned likelihood fit. Shown are the tagged events, the fitted distribution that
describes the tagged events and the fitted background contribution. The fit result is that
fs = (2.70±1.04) % of the 3158 tagged events, Ntag, are consistent with the tt hypothesis.

The number of observed excess events is

Nexcess = fs ·Ntag = 85.44± 32.96 events, (7.5)

where Nexcess is equivalent to the difference Nobs−Nbg in the cut-based analyses. Only the
uncertainty of the fitted fraction fs is used for the uncertainty of the number of observed
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ε for tt all-jets lepton+jets
inclusive exclusive inclusive exclusive

trigger 0.2537± 0.0022 0.7725± 0.0066 0.0169± 0.0008 0.5305± 0.0255
NSV T ≥ 1,dRtags > 1.5 0.1430± 0.0012 0.5635± 0.0045 0.0095± 0.0005 0.5628± 0.0275

NN0 > 0.05 0.1426± 0.0012 0.9971± 0.0007 0.0093± 0.0005 0.9831± 0.0095
NNall > 0.1 0.1385± 0.0012 0.9716± 0.0020 0.0084± 0.0005 0.8964± 0.0227

Table 7.2: Inclusive and exclusive efficiencies for tt all-jets signal. Shown are the effi-
ciencies for both the all-jets and lepton+jets decay channel, for a mild NNall > 0.1 cut.
These efficiencies are used in the binned likelihood fit on the NNall output.

events. The efficiency for tt signal for the considered NNall range shown is

εall−jets = 0.1385± 0.0012, (7.6)

and
ε`+jets = 0.0084± 0.0005. (7.7)

Combining these, the total efficiency for tt signal is

(ε× BR)tt̄ = 0.068± 0.001, (7.8)

a higher efficiency as the cut on NNall > 0.91 is loosened to NNall > 0.1. The inclusive
and exclusive efficiencies for the trigger and b identification, together with the final NNall

cut efficiency are listed in Table 7.2.
The fit gives a normalization of the background which is:

fb = 0.973± 0.021. (7.9)
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The cross section can be calculated by using Equation 6.7, where Nobs − Nbg now
obviously can be replaced by Nexcess. The resulting estimate for the cross section is

σ(tt̄) = 7.7± 3.0 (stat) pb. (7.10)

The observed fractional error, the statistical error divided by the central value of the cross
section, is 0.39, of similar size as the value 0.4 from the neural network cut analysis. This
is caused by the fact that the statistical fluctuations in the background from the TRF
prediction are also included in the fit. This result is consistent with the cross section
measurement as described in Chapter 6.

7.5 Methods used by other experiments

The CDF collaboration has also measured the tt cross section in the all-jets channel, using
a comparable dataset [67]. The CDF measurement counts the number of vertex tagged
jets as a function of jet multiplicity, after the following kinematic cuts:

6 ≤ Njets ≤ 8; (7.11)

HT ≥ 320 GeV; (7.12)

C ≥ 0.77; (7.13)

and

A+
0.0037

GeV
H3j
T ≥ 0.85. (7.14)

These requirements were optimized for the best statistical significance of the CDF analysis,
and have not been re-optimized for use on the DØ dataset. The dominant systematic error
in the CDF measurement is the jet energy scale, which introduces an uncertainty in the
signal efficiency of 30 %, equivalent to the result presented in this thesis.

Figure 7.5 shows the behavior of the dataset used in this thesis, after preselection,
for HT , C and A versus H3j

T , the variables used in the CDF analysis. The CDF cuts are
also indicated. Figure 7.6 shows the distribution of the number of predicted and observed
secondary vertex tags, as a function of the number of jets in the event, after the kinematic
cuts, and the number of tagged jets expected for a cross section of σtt̄ = 6.5 pb.

The cross section can be calculated from the results in Table 7.3. The efficiency for the
kinematic cut analysis is defined as εk. The efficiency, εk, already contains the inefficiency
caused by the all-jets branching ratio, and the preselection and trigger efficiencies. The
cross section is calculated from:

σtt̄ =
Nobs − Nbg

εk〈ntag〉L
, (7.15)

where Nobs and Nbg are the numbers of observed tagged jets and expected background
jets, respectively. To obtain the cross section from the number of tagged jets the efficiency
has to be multiplied by the average number of tags expected in a tt event, 〈ntag〉.
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Figure 7.5: Variables used in the CDF-style analysis. Shown are: (A) the transverse
energy HT , (B) the centrality C and the aplanarity A versus the non-leading transverse
energy H3j

T for data (C), which is dominantly background, and tt signal Monte Carlo (D).
The lines shown are the kinematic cuts as listed in equations 7.12 through 7.14.

Using the values for the CDF measurement as listed in Table 7.3, the CDF preliminary
Run 2 cross section [67] measured in the tt all-jets decay channel is:

σtt̄ = 7.8 ± 2.5(stat)+4.7
−2.3 (syst) pb; (7.16)

while the same method applied on the DØ dataset yields:

σtt̄ = 8.2 ± 3.3 (stat)+3.6
−2.0 (syst) pb. (7.17)

The DØ and CDF measurements are consistent within both statistical and systematic
uncertainties, and the measurement on the DØ dataset is also consistent with the neural
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variable symbol CDF analysis This dataset
Integrated luminosity [pb−1] L 165 ± 10 162 ± 11
Candidate tags Nobs 326 328
Expected background Nbg 264.7 ± 17.2 276.1 ± 17.6
Kinematic efficiency for tt [%] εk 6.2 ± 1.9 4.6 ± 1.4
average number of tags per tt 〈ntag〉 0.763 ± 0.065 0.844 ± 0.062

Table 7.3: Input values for the CDF cross section measurement, and the numbers derived
on the DØ dataset. The values from the CDF analysis are taken from [67].

network cross section analysis as presented in Chapter 6. To compare the neural network
analysis to the tag counting ‘CDF-style’ analysis on DØ data, the statistical error divided
by the central value of the cross section is considered. The observed fractional error is
equivalent to 0.40 for both analyses.

The main difference between the CDF and DØ measurements is that the number of
background events is higher in the DØ data set. As the average number of tags per event
〈ntag〉 is also higher, this can be attributed to a difference in efficiency and purity of the
vertex tagger. The DØ secondary vertex tagger has a higher efficiency than the CDF
tagger, when using the nominal selection parameters. However, this has the disadvantage
of the introduction of a larger background in the DØ analysis.
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7.6 Cross section measurement with soft muon tagging

7.6 Cross section measurement with soft muon tag-

ging

It is interesting to study the stability of the tt cross section measurement using an al-
ternative method to the secondary vertex tag discussed in Chapter 6. Here, soft muon
b-jet identification is used. At present no electron tags are used. Nevertheless, soft muon
tagging is referred to as soft lepton tagging (SLT). This measurement is also useful for
comparison to the Run 1 results [61, 64, 65], where SLT was also used.

7.6.1 Dataset

For the soft muon analysis, the requirements on the muon detector system are more
tight than for the vertex tagged dataset (See Section 4.1.1, particularly Table 4.1). The
integrated luminosity of the dataset after the detector quality requirements is equivalent
to:

L = 149.9 pb−1 (7.18)

7.6.2 b identification

After preselection, the requirement that at least one jet contains a soft muon is used to
increase the b content of the sample. Soft muon tagging has as an advantage that the
fake rate is low, but unfortunately at a cost of efficiency compared to the SVT tag.

The efficiency to tag a b jet with a muon is approximately the same for Monte Carlo
as for data (See Section 3.4.3). As only around 11% of b jets decay to a muon2, the
maximum efficiency is limited to 11%. The average efficiency to tag a b jet in a tt Monte
Carlo event is 7.7%. The equivalent efficiency for c quark jets is 3.3%. The fake rate in
data is of the order of 0.5%.

7.6.3 Background prediction

To predict the number of muon tagged events, the method described in Section 5.2 is
used, but now for muon tagged events.

The obvious background is removed by making a cut on NN0 > 0.05. Figure 7.7
shows the TRF fit distributions as a function of jet ηdet and pT . Shown are the number of
jets with a muon in the jet divided by the total number of jets, per ηdet and ET bin. The
TRF fits are shown as solid curves, while the uncertainty on the fit is shown as a dashed
curve. The fraction of tagged jets is about 10 times smaller than in the SVT analysis.
(The corresponding figures for the SVT analysis are shown in Figure 5.3 and 5.4.)

2Only a fraction of all b-jets decays to a muon, either directly, b → µ + X (approximately 1/10), or
indirectly, b→ c→ µ+X (approximately 1/100). If both are taken into account, the combined efficiency
is 11%.
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Figure 7.7: TRF determination for jets with a soft muon tag, as a function of jet pT
(left) and ηdet (right). The markers are the number of jets with a µ inside divided by the
number of total jets, on a bin-by-bin basis. The TRF fits are shown as the solid curve,
with the dashed curves the uncertainty on the fit.

Background normalization

Analogous to the SVT analysis, the TRF prediction of the number of muon tagged events
is adjusted to give the correct number of events in the background region: 0.3 < NN0 <
0.9. The distribution of tagged events as a function of NN0 is shown in Figure 7.8. The
TRFs describe the data in the background region within statistical uncertainties. The
result for tt Monte Carlo events, normalized for visualization, is also shown.

Figure 7.9 shows the fraction of observed tagged and predicted events as a function of
NN0, for the background region of the neural net. The value of SFTRF = 1.037 ± 0.036
is consistent with unity within errors and stays within the error if cross sections between
σtt̄ = 1 and 20 pb are considered.

7.6.4 Neural Network

We use the same neural networks as used in the SVT analysis. The same preselection
and NN0 cut are used. The distributions of HT , ET5,6 , A, 〈η2〉, M and M 3,4

min are shown
in Figures 7.10 and 7.11 for muon tagged data (markers) and the predicted background
distribution (band). The normalized Monte Carlo distributions are also shown, as his-
tograms. The distributions seem to be predicted reasonably well by the TRF, but contain
fewer events than in the SVT analysis.
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7.6.5 Cross section using counting method

Figure 7.12 shows the expected fractional error as a function of the cut on the NNall

discriminant. The expected statistical significance of the measurement is substantially
lower than for the vertex tag analysis. The optimal NNall cut is obtained at a value of

NNall > 0.9, (7.19)

and results in a fractional error of σfrac = 0.79.

7.6.6 Efficiency

The efficiency for the NNall cut is measured on tt all-jets Monte Carlo events, which are
already corrected for the efficiency of the trigger:

εall−jets = 0.0260± 0.0007, (7.20)

where the errors are due to Monte-Carlo statistics. This efficiency still has to be corrected
for events from the other tt production channels, especially the τ+jets channel can be
expected to have an event topology that is similar to the fully hadronic top decays:

ε`+jets = 0.0009± 0.0002. (7.21)

Combining these two efficiencies according to the branching fractions for lepton+jets and
all-jets tt events leads to a signal efficiency of

ε · BR = 0.0120± 0.0008. (7.22)
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The analysis efficiency for the muon tag analysis is about three times lower than for the
SVT analysis (Equation 6.6).

7.6.7 Observed and expected events

From the TRF prediction, the number of soft muon tagged background events is expected
to be

Nbg = 75.45 ± 1.57 events, (7.23)

where the error comes from statistical fluctuations in our background distribution only.
Figure 7.13 shows the observed NNall distribution in muon tagged events, the predicted
background and the prediction for tt signal and background. The number of observed
tagged events above NNall > 0.90 is

Nobs = 91 events. (7.24)

The probability that these 91 events originate from a statistical fluctuation of the 75.45
background events is equal to 1.8 standard deviations. This is equivalent to a Gaussian
probability of P = 3.7 · 10−2.

7.6.8 Result of the soft muon tag analysis

The systematic uncertainties for a cross section measurement with muon tagging are
mostly identical to the uncertainties introduced when the SVT is used for b identification.
The differences are mainly caused by the change from vertex tagging to muon tagging
and TRF determination. The JES is still the dominant uncertainty. Table 7.4 lists the
systematic and statistical uncertainties.
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Figure 7.10: The NNall input variables HT ,ET5,6 , A and 〈η2〉, for muon tagged events.
Shown are the observed distribution in muon tagged data (markers) and the predicted
background distribution from the TRFs (band). For comparison, the normalized distri-
bution for tt all-jets events is also shown (histogram).

+σ −σ change in cross section
total error on efficiency 32.6% −30.7% -2.1 pb +3.8 pb

total error on background 3.53% −3.83% -1.5 pb +1.6 pb
total systematic error -2.6 pb +4.2 pb

error on the luminosity 6.5% -6.5% -0.6 pb +0.6 pb
statistics -5.1 pb +5.5 pb

Table 7.4: Systematic uncertainties on the cross section measurement using muon tagging.
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Figure 7.11: The NNall input variablesM and M 3,4
min, for muon tagged events. Shown are

the observed distribution in muon tagged data (markers) and the predicted background
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Using soft muon identification, we measure:

σtt̄ = 8.6+5.5
−5.1(stat)+4.2

−2.6(syst)± 0.6(lumi) pb, (7.25)

consistent with the secondary vertex tag measurement, but with significantly larger errors.
One should note that the result in Equation 7.25 is not independent of the cross section

analysis with secondary vertex tagging. Not only is the SLT analysis performed on a
subset of the dataset used for the main measurement, but there also are no requirements
on the presence of secondary vertex tags in the muon analysis or vice versa. Above the
NNall > 0.91 threshold, 32 events have both a muonic and a secondary vertex tag.

7.7 Overview

In this chapter, we investigated the stability of the tt cross section result as measured in
Chapter 6:

σtt̄ = 7.5+3.1
−3.0(stat) +3.3

−2.0(syst) ± 0.5(lumi) pb. (7.26)

This result was obtained from an analysis which used a cut on an artificial neural
network discriminant, NNall > 0.91. The following analysis methods were used to examine
the sample of tagged events with at least six jets:

• Section 7.3: Application of a linear likelihood discriminant instead of an artificial
neural network. This method has as a main advantage that no neural networks were
used. The analysis yielded a cross section of:

σtt̄ = 7.3+3.0
−2.9(stat) pb, (7.27)
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consistent with the neural network analysis, but with a somewhat smaller central
value. The linear likelihood analysis is only possible because the correct kinematical
and topological quantities were chosen in the NNall analysis;

• Section 7.4: A binned likehood fit to the NNall distributions for Monte Carlo signal
events and background events . This analysis has as a main advantage that the
entire distribution is taken into account, so the statistical fluctuations in the sample
can be included in the fit. The result of the binned likelihood fit is:

σtt̄ = 7.7± 3.0 (stat) pb; (7.28)

• Section 7.5: The CDF experiment has performed a cross section measurement on
a similar size dataset. This analysis does not use multivariate methods. When the
CDF analysis is performed on the DØ dataset, the following result is obtained:

σtt̄ = 8.2 ± 3.3 (stat)+3.6
−2.0 (syst) pb; (7.29)

• Section 7.6: A soft muon tag is used for b jet identification. The NNall analysis is
repeated with a muonic jet requirement instead of secondary vertex tagging. The
soft muon analysis yields:

σtt̄ = 8.6+5.5
−5.1(stat)+4.2

−2.6(syst)± 0.6(lumi) pb, (7.30)

where no veto is applied on events that contain two different types of b tags.

As can be observed, the measurement proves to be robust when different analysis methods
are applied. As all these analyses were applied to the same data sample, the results are
considered correlated.
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Chapter 8

Conclusions

This thesis presents a measurement of the tt cross section in the all-jets channel, measured
in pp collisions at a center of mass energy of 1.96 TeV, using data collected with the DØ
detector. The dataset used for this analysis has an integrated luminosity equivalent to
L = 162.5 ± 10.6 pb−1.

A tt cross section measurement is a test of the Standard Model predictions for heavy
quark production, and the first step towards measurements of the mass and other prop-
erties of the top quark. The presented measurement of the cross section for the process
pp̄ → tt̄ uses the decay channel where both top quarks decay to quarks. The top quark
first decays to a b quark and a W boson, and then, for this particular channel, the W
boson decays hadronically. Hence, events with six energetic quarks are expected, which
ideally leads to events with six jets. These so called all-jets events have a significantly
larger branching fraction than other tt decay channels. The large branching fraction in
the all-jets channel means that a significant sample of tt candidates can be extracted,
which can subsequently be used for studies of top quark properties, like the top mass.
The background, multijet production through Quantum Chromo Dynamics (QCD) has a
cross section three to four orders of magnitude larger than expected for tt production.

The analysis presented in this thesis uses the decay vertices of long-lived b-flavored
mesons to identify the b jets. With the silicon detector installed at the start of Run 2
of the Tevatron, the DØ experiment is now able to use this method for b identification.
The presence of b quarks in the event makes it possible to reduce the background to a
few percent of the original sample, while only rejecting around 45% of the tt content in
the sample.

Even after b jet identification, the background dominates the tt signal by about two
orders of magnitude. A variety of kinematic and topological quantities of the measured
jets are studied. A combination of six of these quantities is fed into an artificial neural
network, which is configured to discriminate between the tt signal and the background.
The six quantities are HT , which is sensitive to the energy scale of the event; E5,6

T , a
quantity sensitive to the presence of gluonic jets in QCD multijet processes; A, which
quantifies how the event shape compares to a plane; 〈η2〉, which quantifies how the jets
are placed in the DØ detector;M, a quantity tuned to identify the presence of W bosons
and top quark candidates and M 3,4

min, sensitive to heavy objects in the event. The efficiency
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to collect tt pairs that decay to only hadrons was determined to be 0.08. The relative
uncertainty on this efficiency is 30%, which is dominated by the accuracy with which
the scale of the jet energies in the event is known. A total of 357 events were observed
in a sample where 310 ± 6.6 events were expected if no tt content was present. The
background prediction is derived from multijet data, and has a relative uncertainty of
2%. The excess of events are assigned to tt decay. This sample is the largest ever isolated,
in comparison to any other individual DØ analysis that involved top quarks. The cross
section is extracted to be

σtt̄ = 7.5+3.1
−3.0(statistic) +3.3

−2.0(systematic)± 0.5(luminosity) pb. (8.1)

The stability of the measured cross section is investigated by application of different
analysis methods. The applied methods include the use of cut-based analyses and a linear
likelihood discriminant instead of neural networks. The measurement proved to be robust.
When an alternative method for b identification is used, a comparable result is obtained.
The result agrees with cross section measurements in other tt decay channels and has
errors of comparable size. The results are consistent with theoretical predictions using
NLO perturbation QCD calculation.

In Appendix A, it is also shown that the observed excess of events behaves in a manner
which is consistent with the presence of top quarks in the sample. The excess above
background, 47 top quark candidates, behaves as two objects with an invariant mass near
the top mass. A dedicated measurement of the top quark mass in this channel would
be useful using larger datasets. The investigation in this thesis hints that the expected
uncertainty would be competitive with other top mass measurements.
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Appendix A

Top mass measurement

It is interesting to investigate whether the excess of events that is observed in the NNall

analysis is consistent with the production of tt events. The 357 tagged events used to
calculate the tt all-jets cross section can be used to extract the top mass. This provides a
powerful consistency check: the distribution of the invariant mass of the appropriate jets
should exhibit a top mass peak above the background. The background is expected to
behave different from tt events, though a bias coming from the neural network selection
is expected.

The mass likelihood, as described in Section 5.3.1(v), runs over all the permutations
of the six leading jets. Permutations which assign the jet with vertex tag to the W boson
are ignored. Monte Carlo studies of the W boson mass and width are used for the input
values forM. The permutation which leads to the smallest value ofM is used to provide
the two invariant di-jet masses of the W boson candidate and the two invariant triple-jet
masses of the top quark candidates in the event.

Studies of the tt all-jets reconstruction efficiency are performed on Monte Carlo sim-
ulated events. It turns out that often it is not possible to assign the two b quarks and all
partons from W decay to jets. Jets disappear into the beam pipe, or are too close together
to be identified as separate jets. Through QCD effects it is also possible to move the jet
axis away from the hadronizing quark which created the jet. We find that in tt all-jets
Monte Carlo events with six or more jets, only 16% of the events have all partons matched
to a jet. In this clean sample of reconstructible events, the mass likelihood selects the
correct permutation in 80% of the events. This is equivalent to 13% of the total number
of tt events. In 30% of the events at least one top quark is correctly reconstructed, while
in 58% of tt events at least one W boson is identified.

A.1 The mass of the W boson

Figure A.1 shows the observed distribution of the invariant mass of the W boson can-
didates. Shown are the distributions for tagged data, together with the predicted back-
ground distribution and the expected signal + background distribution. The tt all-jets
excess represents a presumed cross section of 7.5 pb, the estimate for the tt cross section
as obtained in Chapter 6. As Figure A.1 shows, the background distribution has its max-
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imum around the W mass, but is broader. The excess in the data is described well by
the predicted distribution.

Figure A.2 shows the mass distributions for the W boson candidates for background
subtracted data and from tt Monte Carlo events. Also shown is a Breit-Wigner distri-
bution fit to the distributions, where the width of the peak in data is fixed to the value
obtained from the Monte Carlo simulation. The fit to the distributions in Figure A.2
yields the following values for the central value MW :

MW (data) = 79.86± 4.87 GeV/c2, (A.1)

and

MW (MC) = 84.54± 0.11 GeV/c2 (A.2)

The W boson mass from Monte Carlo is compatible with our expectation, as has been
discussed in Section 4.4.1. It should be noted that the error quoted does not include any
systematic uncertainty.

One could consider to re-calibrate the JES using the measured W boson mass. If
the JES is varied by one standard deviation, the W boson mass as observed in Monte
Carlo events shifts by ±3 GeV/c2. The statistical uncertainty in data and systematic
uncertainty in Monte Carlo are of similar size. As a consequence, the re-calibration of the
jet energy scale to yield the known W mass introduces errors that are comparable to the
current errors caused by the jet energy scale.
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Figure A.2: The reconstructed mass of the W boson, the predicted distribution for
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and from Monte Carlo tt all-jets events (right). The lines shown are fits of a Breit-Wigner
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background distribution (mark-
ers) and fit (curve) with errors
(dashed curves) for triple-jet in-
variant masses in QCD events. The
fit uses a sum of three Gaussian
distributions.

139



Top mass measurement

A.2 Triple-jet invariant mass

This section discusses the triple-jet invariant mass distribution that is expected for the
QCD background. For each event we consider two systems of three jets provided by the
mass likelihood. The background content in the tagged sample is predicted with the TRF
method. This is identical to the method in the cross section analysis. Figure A.3 shows
the predicted mass distribution for the background content above NNall > 0.91. Also
shown is a fit and errors of the sum of three Gaussian distributions

b(m) = c1G(m,µ1, σ1) + c2G(m,µ2, σ2) + c3G(m,µ3, σ3), (A.3)

where G(m,µ, σ) is a Gaussian distribution with mean µ and width σ, that depends on
the triple-jet invariant mass m. This function was selected because the fit seemed to
represent the observed distribution and resulted in a low χ2. Other functions that were
considered were high order polynomials and two Gaussian distributions.

The background distribution peaks around the expected top mass but has a large
spread. This behavior is expected as the neural network selection prefers (background)
events that are kinematically similar to tt events. For a ‘stand-alone’ top mass measure-
ment one has to consider possible biases and account for resulting systematic uncertainties.
A study of these uncertainties is beyond the scope of this thesis. Our purpose is just to
show that the excess events are consistent with the presence of top quarks in the sample.

A.3 The excess and its invariant mass
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Figure A.4: Invariant triple-jet
mass of the tagged sample (mark-
ers), and the predicted background
from fit (dashed line).

After parametrization of the predicted background, we are now ready to consider
the triple-jet mass distribution in the tagged data. Figure A.4 shows the results for
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A.3 The excess and its invariant mass

top candidates in tagged events that passed the NNall > 0.91 cut. Also shown is the
predicted background contribution obtained from the triple-Gaussian fit, as discussed
above. At low and high invariant masses, the tagged sample seems to be consistent with
background. There is a small excess of events in the invariant triple-jet mass spectrum.
Before considering the central value of the excess, the predictions from Monte Carlo
simulation will be compared to the observed triple-jet mass distribution.

]2triple-jet mass [GeV/c
100 200 300 400

to
p

 c
an

d
id

at
es

0

20

40

60

80
expected distribution

background (fit)

signal+background (fit)

2=175 GeV/ctm

Figure A.5: The expected tagged
data distribution (markers) for
a Monte Carlo top mass of
175 GeV/c2. Also shown are
the expected background from fit
(dashed line), and the fit to the
combined signal and background
(line).

The expected excess above background is studied by adding Monte Carlo tt events to
the predicted background, using the measured cross section of 7.5 pb. Figure A.5 and A.6
show the expected tt contribution. The markers represent the distribution for predicted
signal and background for three different top masses: 165, 175 and 185 GeV/c2. Also
shown are fits to the distributions using the sum of the background and a Breit-Wigner
function. The central values are listed in Table A.7. The central value of the peak above
background follows the input top mass, but there is a bias towards larger masses. We
have made no attempt to correct for this shift.

We now return to the excess observed in data. Figure A.8 shows the invariant triple-
jet mass in tagged events, after subtraction of the predicted background. Also shown is
the fit of a Breit-Wigner distribution (and its ±1σ uncertainty), which yields an average
value of

mt = 181.8± 3.7 GeV/c2, (A.4)

where only the statistical uncertainty on the fit is given. The main systematic uncertainty
is expected to come from the JES and biases in the selection and reconstruction of the
event. Although systematic effects were not taken into account in this study, we conclude
that the observed excess of events is consistent with the production of top quarks.

In addition, as a closure test we performed the following check. The number of events
and the width of the Breit-Wigner distribution are left free in the fit. The fitted excess
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Figure A.6: The expected tagged data distributions (markers) for two different input top
masses: 165 (left) and 185 GeV/c2 (right). Also shown are the expected background from
fit (dashed line), and the fit to the combined signal and background (line).
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Figure A.7: The peak value of the excess, as predicted by Monte Carlo simulation for
different input values of mt.
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Figure A.8: Invariant triple-jet
mass of the tagged sample, after
background subtraction. Shown
are the tagged data (markers), the
fit through the excess events (solid
curve) and fit uncertainty (dashed
curves).
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A.4 Comparison to previous measurements

distribution contains 105 top quark candidates (52 events), the background distribution
contains 610 candidates (305 events). The observed excess corresponds to a tt cross
section of σtt̄ = 8.4 pb , consistent with the cross section measurement as presented in
Chapter 6.

A.4 Comparison to previous measurements

The Run 1 mass measurement in the tt all-jets channel by the DØ collaboration [65] yields
a value of

mt = 178.5± 13.5(stat)± 7.7(syst) GeV/c2, (A.5)

which was measured on a relatively small sample of 16.6 ± 7 candidate events in a
sample of 65 tagged events collected in the Run 1 period, using soft muon tagging for
b-identification.

The CDF measurement of the top mass in the all-jets channel in Run 1 [66], which
used vertex identification, resulted in a measurement of

mt = 186± 10(stat)± 7(syst) GeV/c2, (A.6)

in a sample containing 19 signal events and a background of 63 vertex tagged events.
Although the mass measurement in this thesis is only used to confirm that the observed

excess in the cross section measurement is consistent with tt signal, the observed statistical
error from the fit on the top mass is already a significant improvement over the Run 1
measurement. The small statistical error indicates that a top mass measurement with
significantly lower uncertainty in this channel is possible. No study of systematic effects
was done. If the systematic uncertainty is around the same value as the Run 1 CDF
and DØ measurements, a mass measurement in this particular tt decay channel will also
contribute substantially to the combined top mass measurements.
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Samenvatting

Dit proefschrift beschrijft een meting van top quark paar (tt) productie bij de Teva-
tron proton-antiproton (pp) versneller. De proton op antiproton botsingen hebben een
zwaartepuntsenergie van 1.96 TeV. Om de botsingen te registreren wordt gebruik gemaakt
van de DØ detector.

De hier gepresenteerde meting van de werkzame doorsnede voor het proces pp̄ → tt̄
bekijkt het vervalskanaal waar beide top quarks vervallen naar hadronen. De experi-
mentele signatuur voor dit type tt creatie zijn interacties waarbij zeer veel (zes of meer)
jets worden geproduceerd. Deze hadronische vervallen gebeuren vaker dan de andere tt
vervalskanalen. Het nadeel van dit vervalskanaal is echter dat er ook zeer veel achtergrond
is. Deze achtergrond, multi-jet Quantum Chromo Dynamische productie (QCD), waarbij
ook zes of meer jets geproduceerd worden, komt vele duizenden malen vaker voor dan
het top paar signaal. Dat het toch mogelijk is om een meting te doen in dit moeilijke
kanaal komt doordat top quarks naar b quarks vervallen. Door de aanwezigheid van b
quarks in een jet te eisen, wordt de achtergrond drastisch gereduceerd, maar niet volledig
verwijderd daar b quarks ook gevormd kunnen worden via QCD processen. Tevens is het
mogelijk om een fout te maken in de identificatie, en dus een niet-b jet te ‘labelen’ als een
b jet.

De meting in dit proefschrift identificeert b quarks met behulp van de reconstructie van
de vervalsvertex van de gehadroniseerde b quark. Dit is de eerste keer dat deze methode
wordt gebruikt bij een tt analyse van door het DØ experiment geregistreerde botsingen.
De gebruikte dataset bestaat uit bijna 300.000 Tevatron botsingen, die allen zes of meer
jets in de DØ detector hebben gecreeërd. Deze dataset is equivalent aan een gëıntegreerde
luminositeit van L = 162.5±6.5% pb−1. De sub-dataset waar b jets in zijn gevonden bevat
18.000 botsingen.

Na de identificatie van b quarks bevat de dataset nog steeds ongeveer honderd keer
meer achtergrond dan tt signaal. Vele kinematische en topologische grootheden zijn
bestudeerd, deze worden berekend op basis van de gemeten jets. Uiteindelijk combineren
we zes van deze grootheden in een artificieel neuraal netwerk. Het neuraal netwerk is zo
geconfigureerd dat het onderscheid maakt tussen tt signaal en multi-jet achtergrond. Om
de achtergrond te beschrijven wordt gebruik gemaakt van de veel grotere dataset waarop
geen b-identificatie op is toegepast.

Er zijn 357 gebeurtenissen gëısoleerd, waarvan we voorspellen dat er 310± 6.6 achter-
grond zijn. De 47 extra gebeurtenissen worden aan hadronisch tt verval toegeschreven, de
grootste tt dataset ooit geobserveerd in een DØ tt analyse. Uit simulaties is gebleken dat
deze methode een efficientie heeft van 0.08±0.024 voor hadronische tt events. De system-
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atische onzekerheid van 30% komt bijna geheel voort uit onzekerheden op de schatting
van de energie schaal van de DØ calorimeter.

Als we alle gegevens combineren, resulteert dit in een gemeten waarde voor de werkzame
doorsnede van

σtt̄ = 7.5+3.1
−3.0(statistisch) +3.3

−2.0(systematisch)± 0.5(luminositeit) pb. (A.7)

Verschillende tests zijn toegepast om aan te tonen dat de gebruikte methode robuust
is. De gemeten waarde komt goed overeen met theoretische voorspellingen, en is tevens
vergelijkbaar in precisie met metingen van σtt̄ in andere vervalskanalen.

In Appendix A is aangetoond dat de geobserveerde extra gebeurtenissen zich gedragen
zoals verwacht wordt als er top quarks aanwezig zijn in de data. De botsingen met top
kandidaten kunnen worden gekarakteriseerd als twee massieve objecten met een invariante
massa in de buurt van de topmassa. De studie laat doorschemeren dat het mogelijk is om
een concurrerende topmassameting uit te voeren in het hadronische tt vervalskanaal.
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